【題目】已知數(shù)列{an}滿足a11an13an1.

(1)證明是等比數(shù)列,并求{an}的通項公式;

(2)證明: .

【答案】(1)答案見解析;(2)證明見解析.

【解析】試題分析:

(1)結合題中所給的遞推關系可得: ,據(jù)此可得數(shù)列是首項為,公比為3的等比數(shù)列;

(2)結合(1)的結論可得,據(jù)此進行放縮后求和即可證得題中的結論.

試題解析:

(1)an13an1an13,所以3,

所以是等比數(shù)列,首項為a1,公比為3,

所以an·3n1,

因此{an}的通項公式為an(nN*)

(2)(1)知:an,所以,

因為當n1時,3n12·3n1,

所以,

于是1,

所以.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】的內角所對的邊分別為,且.

(1)求;

(2)若,的面積為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】為了解學生身高情況,某校以10%的比例對全校700名學生按性別進行抽樣檢查,測得身高情況的統(tǒng)計圖如圖所示:

(1)估計該校男生的人數(shù);

(2)估計該校學生身高在170185cm的概率;

(3)從樣本中身高在180190cm的男生中任選2人,求至少有1人身高在185190cm的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】利用隨機模擬的方法可以估計圖中由曲線與兩直線x=2y=0所圍成的陰影部分的面積S①先產生兩組0~1的均勻隨機數(shù),a=RAND(。b=RAND(。; 做變換,令x=2a,y=2b;③產生N個點(xy),并統(tǒng)計落在陰影內的點(xy)的個數(shù),已知某同學用計算機做模擬試驗結果,選取了以下20組數(shù)據(jù)(如圖所示),則據(jù)此可估計S的值為____

x

y

y-0.5*x*x

0.441414481

1.849136261

1.751712889

1.836710045

0.508951247

-1.177800647

1.389538592

0.999398689

0.033989941

0.745446842

1.542498362

1.264652865

0.981548556

1.928476536

1.446757752

1.87036015

1.287100762

-0.462022784

1.20252176

1.271691664

0.548662372

1.931929493

0.920911487

-0.945264297

0.450507939

1.561663263

1.460184562

1.356178263

1.856227093

0.936617353

0.408489063

1.564834147

1.481402489

0.163980707

0.135034106

0.121589269

1.868152447

0.350326824

-1.394669959

0.252753469

1.287326597

1.255384439

1.253648606

1.872701968

1.086884555

0.679831952

0.140283887

-0.090801854

1.544339084

0.804655288

-0.387836316

1.563089931

0.872844524

-0.348780542

1.17458008

0.867440167

0.177620985

1.057219794

1.791271879

1.232415032

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知連續(xù)不斷函數(shù),,

(1)證明:函數(shù)在區(qū)間上有且只有一個零點;

(2)現(xiàn)已知函數(shù)上單調遞增,且都只有一個零點(不必證明),記三個函數(shù)的零點分別為。

求證:Ⅰ);

Ⅱ)判斷的大小,并證明你的結論。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在三棱錐中,是邊長為的等邊三角形,分別是的中點

)求證:平面;

)求證:平面平面;

)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設橢圓 的左、右焦點分別為,上頂點為,過點垂直的直線交軸負半軸于點,且.

Ⅰ)求橢圓的離心率;

Ⅱ)若過、三點的圓恰好與直線 相切,求橢圓的方程;

III)在(Ⅱ)的條件下,過右焦點作斜率為的直線與橢圓交于、兩點,在軸上是否存在點使得以為鄰邊的平行四邊形是菱形,如果存在,求出的取值范圍,如果不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓的離心率為,以原點為圓心,橢圓的短半軸長為半徑的與直線相切.

(Ⅰ)求橢圓的方程;

(Ⅱ)過定點斜率為的直線與橢圓交于兩點,若,求斜率的值;

(Ⅲ)若(Ⅱ)中的直線交于兩點,設點上,試探究使的面積為的點共有幾個?證明你的結論.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某興趣小組欲研究晝夜溫差大小與患感冒人數(shù)多少之間的關系,他們分別到氣象局與某醫(yī)院抄錄了月份每月號的晝夜溫差情況與因患感冒而就診的人數(shù),得到如下資料:

日期

1月10日

2月10日

3月10日

4月10日

5月10日

6月10日

晝夜溫差

就診人數(shù)(個)

該興趣小組確定的研究方案是:先從這六組數(shù)據(jù)中選取組,用剩下的組數(shù)據(jù)求線性回歸方程,再用被選取的組數(shù)據(jù)進行檢驗.

(1)求選取的組數(shù)據(jù)恰好是相鄰兩月的概率;

(2)若選取的是1月與月的兩組數(shù)據(jù),請根據(jù)2至5月份的數(shù)據(jù),求出關于的線性回歸方程;

(3)若由線性回歸方程得到的估計數(shù)據(jù)與所選出的檢驗數(shù)據(jù)的誤差均不超過人,則認為得到的線性回歸方程是理想的,試問該小組所得線性回歸方程是否理想?

參考數(shù)據(jù),

(參考公式: ,

查看答案和解析>>

同步練習冊答案