分析 (1)連接BD,與AC相交于O,連接OD1,則O是BD的中點(diǎn),證明D1MBO是平行四邊形,可得D1O∥MB,即可證明BM∥平面D1AC
(2)利用三棱錐的體積公式求B1到平面D1AC的距離.
解答 (1)證明:連接BD,與AC相交于O,連接OD1,則O是BD的中點(diǎn),
∵M(jìn)是線段B1D1的中點(diǎn),
∴D1M∥BO,D1M=BO,
∴D1MBO是平行四邊形,
∴D1O∥MB,
∵BM?平面D1AC,D1O?平面D1AC
∴BM∥平面D1AC;
(2)解:∵AB=4,AD=AA1=3,
∴${V}_{{B}_{1}-{D}_{1}AC}$=4×3×3-$\frac{1}{3}×4×3×3$×$\frac{1}{2}$×3=18,
∵△D1AC中,D1A=3$\sqrt{2}$,D1C=5=AC,
∴${S}_{△{D}_{1}AC}$=$\frac{1}{2}×3\sqrt{2}×\sqrt{25-(\frac{3\sqrt{2}}{2})^{2}}$=$\frac{3\sqrt{41}}{2}$,
設(shè)B1到平面D1AC的距離為h,則$\frac{1}{3}×\frac{3\sqrt{41}}{2}h$=18,∴h=$\frac{36\sqrt{41}}{41}$.
點(diǎn)評(píng) 本題考查了線面平行的判定定理,考查點(diǎn)面的距離以及數(shù)形結(jié)合思想,是一道中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{13}}}{3}$ | B. | $\frac{{\sqrt{13}}}{2}$ | C. | $\frac{{\sqrt{5}}}{3}$ | D. | $\frac{{\sqrt{5}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [1,+∞) | B. | (-∞,1] | C. | (-∞,2] | D. | [2,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | [-$\frac{2}{e}$,-$\frac{4}{{e}^{2}}$] | B. | [-$\frac{2}{e}$,2e] | C. | [-$\frac{4}{{e}^{2}}$,2e] | D. | [$\frac{4}{{e}^{2}}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2 | B. | $\sqrt{5}$ | C. | 3 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
經(jīng)濟(jì)損失不超過(guò) 4000元 | 經(jīng)濟(jì)損失超過(guò) 4000元 | 合計(jì) | |
捐款超過(guò) 500元 | 60 | ||
捐款不超 過(guò)500元 | 10 | ||
合計(jì) |
P(K2≥k) | 0.10 | 0.05 | 0.025 |
k | 2.706 | 3.841 | 5.024 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | θ1=θ2 | B. | θ1>θ2 | C. | θ1<θ2 | D. | 不能確定 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com