18.已知數(shù)列{an}的通項${a_n}={2^n}cos({nπ})$,則a1+a2+…+a100=(  )
A.0B.$\frac{{2-{2^{101}}}}{3}$C.2-2101D.$\frac{2}{3}({{2^{100}}-1})$

分析 推導出${a}_{n}=(-2)^{n}$,由此利用等比數(shù)列前n項和公式能求出a1+a2+…+a100

解答 解:∵數(shù)列{an}的通項${a_n}={2^n}cos({nπ})$,
∴a1=2cosπ=-2,
${a}_{2}={2}^{2}$cos2π=22,
${a}_{3}={2}^{3}cos3π=-{2}^{3}$,
${a}_{4}={2}^{4}cos4π={2}^{4}$,
∴${a}_{n}=(-2)^{n}$,
a1+a2+…+a100=$\frac{-2[1-(-2)^{100}]}{1-(-2)}$=$\frac{2}{3}$(2100-1).
故選:D.

點評 本題考查數(shù)列的前100項和的求法,考查余弦函數(shù)、等比數(shù)列等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是中檔題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

4.對于任意實數(shù)a、b、c、d,下列結(jié)論中正確的個數(shù)是( 。
①若a>b,c≠0,則ac>bc;②若a>b,則ac2>bc2;③若ac2>bc2,則a>b.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

5.函數(shù)f(x)=ex-x-2,k為整數(shù),且當x>0時,(x-k)f′(x)+x+1>0恒成立,則k的最大值是( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)y=(1og3x)2-21og3x+3的定義域為[1,27],求函數(shù)的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.20世紀30年代,德國數(shù)學家洛薩---科拉茨提出猜想:任給一個正整數(shù)x,如果x是偶數(shù),就將它減半;如果x是奇數(shù),則將它乘3加1,不斷重復這樣的運算,經(jīng)過有限步后,一定可以得到1,這就是著名的“3x+1”猜想.如圖是驗證“3x+1”猜想的一個程序框圖,若輸出n的值為8,則輸入正整數(shù)m的所有可能值的個數(shù)為( 。
A.3B.4C.6D.無法確定

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.近年來,微信越來越受歡迎,許多人通過微信表達自己、交流思想和傳遞信息,微信是現(xiàn)代生活中進行信息交流的重要工具.而微信支付為用戶帶來了全新的支付體驗,支付環(huán)節(jié)由此變得簡便而快捷.某商場隨機對商場購物的100名顧客進行統(tǒng)計,其中40歲以下占$\frac{3}{5}$,采用微信支付的占$\frac{2}{3}$,40歲以上采用微信支付的占$\frac{1}{4}$.
(Ⅰ)請完成下面2×2列聯(lián)表:
40歲以下40歲以上合計
使用微信支付
未使用微信支付
合計
并由列聯(lián)表中所得數(shù)據(jù)判斷有多大的把握認為“使用微信支付與年齡有關(guān)”?
(Ⅱ)若以頻率代替概率,采用隨機抽樣的方法從“40歲以下”的人中抽取2人,從“40歲以上”的人中抽取1人,了解使用微信支付的情況,問至少有一人使用微信支付的概率為多少?
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.
參考數(shù)據(jù):
P(K2≥k00.1000.0500.0100.001
k02.7603.8416.63510.828

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.直線x+2y=m(m>0)與⊙O:x2+y2=5交于A,B兩點,若$|{\overrightarrow{OA}+\overrightarrow{OB}}|>2|{\overrightarrow{AB}}|$,則m的取值范圍為(2$\sqrt{5}$,5).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

7.已知函數(shù)f(x)=2sinxcosx+2sin2x-1,(x∈R)
(1)求函數(shù)f(x)的最大值;
(2)若f($\frac{α}{2}$+$\frac{π}{4}$)=$\frac{4\sqrt{2}}{5}$,α∈($\frac{π}{4}$,$\frac{π}{2}$),求cosα的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.設f(x)是定義在R上的奇函數(shù),當x>0時,f(x)=2x+1,則$f({{{log}_{\frac{1}{4}}}3})$=-2$\sqrt{3}$.

查看答案和解析>>

同步練習冊答案