7.用列舉法表示下列集合.
(1)A={y|y=-2x2+7,x∈N,y∈N};
(2)B={(x,y)|y=-2x2+7,x∈N,y∈N}.

分析 根據(jù)題意,分析可得符合集合中元素的特征的實(shí)數(shù),用列舉法表示可得答案.

解答 解:(1)A={y|y=-2x2+7,x∈N,y∈N}={5,7}
(2)B={(x,y)|y=-2x2+7,x∈N,y∈N}={(0,7),(1,5)}

點(diǎn)評(píng) 本題考查集合的表示方法,關(guān)鍵是分析出集合中元素的特征.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.①已知復(fù)數(shù)z滿足|z|-z=$\frac{10}{1-2i}$,求z.
②用數(shù)學(xué)歸納法證明:n3+5n(n∈N*)能被6整除.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知復(fù)數(shù)z1=cosθ-i,z2=sinθ+i,則|z1•z2|的最大值為(  )
A.$\frac{3}{2}$B.$\sqrt{2}$C.$\frac{\sqrt{6}}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知函數(shù)f(x)=|2x-1|+|x-2a|,若?x∈[1,2],f(x)≤4,則實(shí)a的取值范圍是( 。
A.($\frac{1}{4}$,$\frac{3}{2}$]B.[$\frac{1}{2}$,$\frac{3}{2}$]C.[1,$\frac{3}{2}$]D.[$\frac{1}{2}$,2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,已知底面為菱形的四棱錐P-ABCD中,△ABC是邊長(zhǎng)為2的正三角形,AP=BP=$\frac{\sqrt{2}}{2}$,PC=$\sqrt{2}$且N為線段AC的中點(diǎn),M為側(cè)棱PB的中點(diǎn),O為線段AB的中點(diǎn),
(1)求證:NM∥平面PAD;
(2)求證:直線PO⊥平面ABCD;
(3)在線段BC上是否存在一點(diǎn)K,使得AK⊥PD?若存在求出點(diǎn)K的具體位置并證明,若不存在請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)函數(shù)f(x)=$\frac{x}{x+2}$,觀察:
f1(x)=f(x)=$\frac{x}{x+2}$,f2(x)=f(f1(x))=$\frac{x}{3x+4}$,
f3(x)=f(f2(x))=$\frac{x}{7x+8}$,f4(x)=f(f3(x))=$\frac{x}{15x+16}$,…
根據(jù)以上事實(shí),由歸納推理可得:
當(dāng)n∈N+,且n≥2時(shí),f7(7)=f(f6(x))=$\frac{x}{127x+128}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.點(diǎn)(1,0)到直線x+y+1=0的距離為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在極坐標(biāo)系中,與點(diǎn)(3,-$\frac{π}{3}$)關(guān)于極軸所在直線對(duì)稱的點(diǎn)的極坐標(biāo)是(  )
A.(3,$\frac{2π}{3}$)B.(3,$\frac{π}{3}$)C.(3,$\frac{4π}{3}$)D.(3,$\frac{5π}{6}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.棱長(zhǎng)為a的正四面體的四個(gè)頂點(diǎn)都在同一個(gè)球面上,若過該球球心的一個(gè)截面如圖所示,并且圖中三角形(正四面體的截面)的面積是3$\sqrt{2}$,則a等于( 。
A.2$\sqrt{2}$B.$\sqrt{2}$C.2$\sqrt{3}$D.$\sqrt{3}$

查看答案和解析>>

同步練習(xí)冊(cè)答案