精英家教網 > 高中數學 > 題目詳情
如圖,△ABC是一個等邊三角形遮陽棚,A、B為南北方向上兩個定點,AB=2米,正東方向射出的太陽光與地面成40°角.為了使遮蔭面△ABD的面積最大,遮陽棚△ABC與地面所成角的大小應為_______________;最大遮蔭面積為______________平方米.

解析:設遮陽棚與地面所成的角為θ,取AB的中點E,連結CE、DE,在△CDE中,由正弦定理得=.

    又CE=,∴DE=.

    要使△ABD面積最大,只需使CE最大即可.

∴當140°-θ=90°,θ=50°時,(S△ABD)max=.

答案:50° 

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

如圖所示是一個半圓柱OO1與三棱柱ABC-A1B1C1的組合體,其中,圓柱OO1的軸截面ACC1A1是邊長為4的正方形,△ABC為等腰直角三角形,AB⊥BC.試在給出的坐標紙上畫出此組合體的三視圖.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•普陀區(qū)二模)如圖,△ABC是邊長為1的正三角形,點P在△ABC所在的平面內,且|
PA
|2+|
PB
|2+
|
PC
|2=a
(a為常數).下列結論中,正確的是( 。

查看答案和解析>>

科目:高中數學 來源: 題型:

(04年上海卷)(16分)

如圖,P-ABC是底面邊長為1的正三棱錐,D、E、F分別為棱長PA、PB、PC上的點, 截面DEF∥底面ABC, 且棱臺DEF-ABC與棱錐P-ABC的棱長和相等.(棱長和是指多面體中所有棱的長度之和)

(1)     證明:P-ABC為正四面體;

(2)     若PD=PA, 求二面角D-BC-A的大小;(結果用反三角函數值表示)

(3)     設棱臺DEF-ABC的體積為V, 是否存在體積為V且各棱長均相等的直

平行六面體,使得它與棱臺DEF-ABC有相同的棱長和? 若存在,請具體構造

出這樣的一個直平行六面體,并給出證明;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:2011年福建省高一上學期期末考試數學理卷 題型:填空題

如圖1,是一個無蓋正方體盒子的表面展開圖,A、   B、C為其上的三個點,則在正方體盒子中,∠ABC等于         度  

 

 

查看答案和解析>>

同步練習冊答案