【題目】已知橢圓,過點的兩條不同的直線與橢圓E分別相交于A,B和C,D四點,其中A為橢圓E的右頂點.
(1)求以AB為直徑的圓的方程;
(2)設(shè)以AB為直徑的圓和以CD為直徑的圓相交于M,N兩點,探究直線MN是否經(jīng)過定點,若經(jīng)過定點,求出定點坐標(biāo);若不經(jīng)過定點,請說明理由.
【答案】(1);(2)經(jīng)過定點,.
【解析】
(1)由已知得AB方程:,與橢圓方程聯(lián)立可求出,則可求出以AB為直徑的圓的圓心和半徑,進(jìn)而可求出圓的方程;
(2)當(dāng)CD斜率存在時,并設(shè)CD方程:,與橢圓方程聯(lián)立,通過根與系數(shù)的關(guān)系可得以CD為直徑的圓方程,將其與以AB為直徑的圓的方程作差,可得直線MN的方程,進(jìn)而可得直線MN過的定點,當(dāng)CD斜率不存在時,直線MN也過的定點,進(jìn)而可得答案.
(1)由已知,則,故AB方程:,
聯(lián)立直線AB與橢圓方程,消去y可得:,得,即,
從而以AB為直徑的圓的圓心為,半徑為,
所以圓的方程為,
即.;
(2)①當(dāng)CD斜率存在時,并設(shè)CD方程:,
設(shè),
由,消去y得:,
故,,
從而,
,
而以CD為直徑的圓方程為:,
即①,
且以AB為直徑的圓方程為②,
②-①得直線,
即
整理得,
可得:,
因為AB與 CD兩條直線互異,則,
即,
令,解得,即直線MN過定點;
②當(dāng)CD斜率不存在時,CD方程:,知,,
則以CD為直徑的圓為,
而以AB為直徑的圓方程,
兩式相減得MN方程:,過點;
綜上所述,直線MN過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率為,分別為橢圓的左右焦點,點為橢圓上的一動點,面積的最大值為2.
(1)求橢圓的方程;
(2)直線與橢圓的另一個交點為,點,證明:直線與直線關(guān)于軸對稱.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知a,b,c分別是△ABC三個內(nèi)角A,B,C所對的邊,且.
(1)求B;
(2)若b=2,且sinA,sinB,sinC成等差數(shù)列,求△ABC的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,已知曲線:(為參數(shù)),曲線:(為參數(shù)),且,點P為曲線與的公共點.
(1)求動點P的軌跡方程;
(2)在以原點O為極點,x軸的非負(fù)半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為,求動點P到直線l的距離的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),是奇函數(shù).
(1)求實數(shù)m的值;
(2)畫出函數(shù)的圖象,并根據(jù)圖象求解下列問題;
①寫出函數(shù)的值域;
②若函數(shù)在區(qū)間上單調(diào)遞增,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】作家馬伯庸小說《長安十二時辰》中,靖安司通過長安城內(nèi)的望樓傳遞信息.同名改編電視劇中,望樓傳遞信息的方式有一種如下:如圖所示,在九宮格中,每個小方格可以在白色和紫色(此處以陰影代表紫色)之間變換,從而一共可以有512種不同的顏色組合,即代表512種不同的信息.現(xiàn)要求每一行,每一列上至多有一個紫色小方格(如圖所示即滿足要求).則一共可以傳遞______種信息.(用數(shù)字作答)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某工廠生產(chǎn)一種產(chǎn)品的原材料費為每件40元,若用x表示該廠生產(chǎn)這種產(chǎn)品的總件數(shù),則電力與機器保養(yǎng)等費用為每件0.05x元,又該廠職工工資固定支出12500元.
(1)把每件產(chǎn)品的成本費P(x)(元)表示成產(chǎn)品件數(shù)x的函數(shù),并求每件產(chǎn)品的最低成本費;
(2)如果該廠生產(chǎn)的這種產(chǎn)品的數(shù)量x不超過3000件,且產(chǎn)品能全部銷售,根據(jù)市場調(diào)查:每件產(chǎn)品的銷售價Q(x)與產(chǎn)品件數(shù)x有如下關(guān)系:,試問生產(chǎn)多少件產(chǎn)品,總利潤最高?(總利潤=總銷售額-總的成本)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,圓的參數(shù)方程為(為參數(shù)),直線的參數(shù)方程為(為參數(shù)),設(shè)原點在圓的內(nèi)部,直線與圓交于、兩點;以坐標(biāo)原點為極點,軸的正半軸為極軸建立極坐標(biāo)系.
(1)求直線和圓的極坐標(biāo)方程,并求的取值范圍;
(2)求證:為定值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com