【題目】下列4個命題:
①“若a、G、b成等比數(shù)列,則G2=ab”的逆命題;
②“如果x2+x﹣6≥0,則x>2”的否命題;
③在△ABC中,“若A>B”則“sinA>sinB”的逆否命題;
④當0≤α≤π時,若8x2﹣(8sinα)x+cos2α≥0對x∈R恒成立,則α的取值范圍是0≤α≤.
其中真命題的序號是________.
科目:高中數(shù)學 來源: 題型:
【題目】已知奇函數(shù)f(x)= 的定義域為[﹣a﹣2,b]
(1)求實數(shù)a,b的值;
(2)判斷函數(shù)f(x)的單調(diào)性,并用定義給出證明;
(3)若實數(shù)m滿足f(m﹣1)<f(1﹣2m),求m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在R上的偶函數(shù)f(x),當x∈(﹣∞,0]時的解析式為f(x)=x2+2x
(1)求函數(shù)f(x)在R上的解析式;
(2)畫出函數(shù)f(x)的圖象并直接寫出它的單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,圓: 與軸的正半軸交于點,以為圓心的圓: ()與圓交于, 兩點.
(1)若直線與圓切于第一象限,且與坐標軸交于, ,當直線長最小時,求直線的方程;
(2)設是圓上異于, 的任意一點,直線、分別與軸交于點和,問是否為定值?若是,請求出該定值;若不是,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=x3﹣3x.
(Ⅰ)求函數(shù)f(x)的極值;
(Ⅱ)若關于x的方程f(x)=k有3個實根,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】關于函數(shù)f(x)=lg (x≠0,x∈R)有下列命題:
①函數(shù)y=f(x)的圖象關于y軸對稱;
②在區(qū)間(﹣∞,0)上,函數(shù)y=f(x)是減函數(shù);
③函數(shù)f(x)的最小值為lg2;
④在區(qū)間(1,+∞)上,函數(shù)f(x)是增函數(shù).
其中正確命題序號為 .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】人最寶貴的是生命,然而有時候最不善待生命的恰恰是人類自己,在交通運輸業(yè)發(fā)展迅猛的今天,由于不懂得交通法規(guī),以及人們的交通安全觀念和自我保護意識還沒有跟上時代的步伐,那些在交通復雜多變的地方而引發(fā)的交通事故也是接連不斷.為了警示市民,某市對近三年內(nèi)某多發(fā)事故路口在每天時間段內(nèi)發(fā)生的480次事故中隨機抽取100次進行調(diào)研,數(shù)據(jù)按事發(fā)時間分成8組:(單位:小時),制成了如圖所示的頻率分布直方圖.
(Ⅰ)求圖中的值,并根據(jù)頻率分布直方圖估計這480次交通事故發(fā)生在時間段與的次數(shù);
(Ⅱ)在抽出的100次交通事故中按時間段采用分層抽樣的方法抽取10次進行個案分析,再從這10次交通事故中選取3次交通事故作重點專題研究.記這3次交通事故中發(fā)生時間在與的次數(shù)為,求的分布列及數(shù)學期望.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知且,函數(shù).
(1)求的定義域及其零點;
(2)討論并用函數(shù)單調(diào)性定義證明函數(shù)在定義域上的單調(diào)性;
(3)設,當時,若對任意,存在,使得,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的極坐標方程是,以極點為平面直角坐標系的原點,極軸為軸的正半軸,建立平面直角坐標系,在平面直角坐標系中,直線經(jīng)過點,傾斜角.
(1)寫出曲線的直角坐標方程和直線的參數(shù)方程;
(2)設與曲線相交于, 兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com