一個(gè)圓柱從頂部切掉兩塊,剩下部分幾何體如圖所示,此幾何體的正視圖和俯視圖如圖所示,其中正視圖中的四邊形是邊長(zhǎng)為2的正方形,則此幾何體的側(cè)視圖的面積為(  )
A、1B、2C、4D、8
考點(diǎn):簡(jiǎn)單空間圖形的三視圖
專題:計(jì)算題,空間位置關(guān)系與距離
分析:三視圖中長(zhǎng)對(duì)正,高對(duì)齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖.
解答: 解:此幾何體的側(cè)視圖為底邊為2,高為2的等腰三角形,
故其面積為
1
2
×2×2=2;
故選B.
點(diǎn)評(píng):三視圖中長(zhǎng)對(duì)正,高對(duì)齊,寬相等;由三視圖想象出直觀圖,一般需從俯視圖構(gòu)建直觀圖,本題考查了學(xué)生的空間想象力,識(shí)圖能力及計(jì)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若α,β均為銳角,且cos(
π
2
+α)=-
5
5
,cos(
π
2
-β)=
10
10
,則α+β等于( 。
A、
π
4
B、
4
C、
π
6
D、
π
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
sin2α
sinα
=
8
5
,則cos2(α-
π
6
)的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知△ABC的頂點(diǎn)A(2,2),頂點(diǎn)B在直線l1:y=
1
2
x上,頂點(diǎn)C在直線l2:y=2x上,則△ABC周長(zhǎng)的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線x+2y-4=0與拋物線y2=4x相交于A、B兩點(diǎn),O是坐標(biāo)原點(diǎn),試在拋物線的弧
AOB
上求一點(diǎn)P,使△PAB面積最大.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在四棱錐P-ABCD中,∠ABC═∠ACD=90°,∠BAC=∠CAD=60°,PA⊥底面ABCD,E為PD的中點(diǎn),PA=2AB=2.
(1)求四棱錐P-ABCD的體積V;
(2)求二面角E-AC-D的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax3+(a-1)x2+48(a-2)x+b的圖象關(guān)于原點(diǎn)成中心對(duì)稱圖形,則f(x)在[-4,4]上的單調(diào)性是( 。
A、[-4,0]上是增函數(shù)[0.4]上是減函數(shù)
B、增函數(shù)
C、減函數(shù)
D、不具備單調(diào)性

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

我們可以運(yùn)用下面的原理解決一些相關(guān)圖形的面積問題:如果與一固定直線平行的直線被甲、乙兩個(gè)封閉圖形所截得線段的比為定值K,那么甲的面積是乙的面積的K倍,你可以從給出的簡(jiǎn)單圖形①(甲:大矩形ABCD、乙:小矩形EFCD)、②(甲:大直角三角形ABC乙:小直角三角形DBC)中體會(huì)這個(gè)原理,現(xiàn)在圖③中的曲線分別是
x2
a2
+
y2
b2
=1(a>b>0)與x2+y2=a2,運(yùn)用上面的原理,圖③中橢圓的面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與曲線
x2
24
+
y2
49
=1共焦點(diǎn),而與曲線
x2
36
-
y2
64
=1共漸近線的雙曲線方程為( 。
A、
y2
16
-
x2
9
=1
B、
x2
16
-
y2
9
=1
C、
y2
9
-
x2
16
=1
D、
x2
9
-
y2
16
=1

查看答案和解析>>

同步練習(xí)冊(cè)答案