△ABC中,角A,B,C所對的邊分別為a,b,c,若a+c=1+
3
,b=1,sinC=
3
sinA.
(1)求角B
(2)設(shè)f(x)=2sin(2x+B)+4cos2x,求函數(shù)f(x)在區(qū)間[
π
2
,π]的值域.
考點:余弦定理,三角函數(shù)中的恒等變換應(yīng)用,正弦定理
專題:三角函數(shù)的圖像與性質(zhì),解三角形
分析:(1)由正弦定理得
sinC
sinA
=
c
a
=
3
,結(jié)合a+c=1+
3
,求出a、c;再由余弦定理求出cosB,得出B;
(2)用三角函數(shù)恒等式化簡f(x),當(dāng)x∈[
π
2
,π]時,求出f(x)的值域.
解答: 解:(1)在△ABC中,∵sinC=
3
sinA,
sinC
sinA
=
c
a
=
3
,即c=
3
a;
又∵a+c=1+
3

∴a=1,c=
3
;
又b=1,∴cosB=
12+(
3
)
2
-1
2
2×1×
3
=
3
2
,
∴B=
π
6

(2)∵f(x)=2sin(2x+
π
6
)+4cos2x
=2sin2xcos
π
6
+2cos2xsin
π
6
+4×
1+cos2x
2

=
3
sin2x+3cos2x+2
=2
3
sin(2x+
π
3
)+2;
當(dāng)x∈[
π
2
,π]時,2x+
π
3
∈[
3
,
3
],
∴sin(2x+
π
3
)∈[-1,
3
2
],
∴-2
3
≤2
3
sin(2x+
π
3
)≤3;
即f(x)的值域是[-2
3
,3].
點評:本題考查了三角函數(shù)的恒等變換,三角函數(shù)的圖象與性質(zhì)以及正弦、余弦定理的靈活運用問題,是綜合性題目
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(文科)已知橢圓C的中心為直角坐標(biāo)系xOy的原點,焦點在x軸上,它的一個頂點到兩個焦點的距離分別是7和1
(1)求橢圓C的方程;
(2)求與橢圓C焦點相同,離心率為
3
2
的雙曲線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-
a
x
-2lnx.
(1)若f(x)在x=2時有極值,求實數(shù)a的值和f(x)的極大值;
(2)若f(x)在定義域上是增函數(shù),求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=sin2x+acosx+2的最大值為g(a).
(1)求g(a)的表達式;
(2)解不等式g(2sinx+4)≤5;
(3)若函數(shù)F(x)=g(x)-kx-3在[0,+∞]上有兩個零點,求實數(shù)k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

各項都為正數(shù)的數(shù)列{an}滿足a1=1,an+12-an2=1.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列{
1
an+an+1
}的前n項和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2+blnx和g(x)=
x-9
x-3
的圖象在x=4處的切線互相平行.
(Ⅰ)求b的值; 
(Ⅱ)求f(x)的極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

受金融危機的影響,某旅游公司的經(jīng)濟效益出現(xiàn)了一定程度的滑坡.現(xiàn)需要對某一景點進行改造升級,以提高旅游增加值.經(jīng)過市場調(diào)查發(fā)現(xiàn),旅游增加值y(萬元)與投入成本x(萬元)之間滿足:y=
51
50
x-ax2-ln
x
10
x
2x-12
∈[t,+∞),其中t為大于
1
2
的常數(shù),且當(dāng)投入成本為10萬元時,旅游增加值為9.2萬元.
(1)求a的值和投入成本x的取值范圍;
(2)當(dāng)投入成本為多少萬元時,旅游增加值y取得最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

雙曲線
x2
a2
-
y2
9
=1的左支上一點P,該雙曲線的一條漸近線方程3x+4y=0,F(xiàn)1,F(xiàn)2分別雙曲線的左右焦點,若|PF1|=10,則|PF2|=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}是以1為首項,2為公差的等差數(shù)列,數(shù)列{bn}是以1為首項,2為公比的等比數(shù)列,則a1 b1+a2b2+…+a10b10=
 

查看答案和解析>>

同步練習(xí)冊答案