【題目】已知函數(shù).
(1)判斷函數(shù)的奇偶性,并說(shuō)明理由;
(2)若在上的最小值為3,求實(shí)數(shù)的值以及相應(yīng)的的值.
【答案】(1)時(shí),函數(shù)為偶函數(shù);時(shí),函數(shù)為奇函數(shù);時(shí),函數(shù)為非奇非偶函數(shù);理由見(jiàn)解析;(2),
【解析】
(1)分為,,三種情況,探究 與 的關(guān)系,即可知奇偶性;
(2)令,則 在最小值為3,結(jié)合導(dǎo)數(shù)探究當(dāng) 取何值時(shí),函數(shù)取最小值,進(jìn)而可求出的值以及相應(yīng)的的值.
解:(1)由題意知,的定義域?yàn)?/span>, ,
當(dāng)時(shí),,則 為偶函數(shù);
當(dāng)時(shí),,則 為奇函數(shù);
當(dāng)時(shí),且,故此時(shí)為非奇非偶函數(shù).
(2)設(shè) ,由題意知, 在最小值為3.則.
當(dāng) 時(shí),,則 在遞增,此時(shí), 最小值 ,
即 ,解得 與矛盾,故舍去;
當(dāng)時(shí),令,解得或 (舍去);當(dāng),即 時(shí),
在恒成立,由之前的討論可知,此時(shí)與矛盾,舍去;
當(dāng),即時(shí),在 上,在上,
所以在上 遞減,在上 遞增,
則當(dāng) 時(shí),有最小值,即 ,解得,此時(shí).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在極坐標(biāo)系中,曲線:,曲線: .以極點(diǎn)為坐標(biāo)原點(diǎn),極軸為軸正半軸建立直角坐標(biāo)系,曲線的參數(shù)方程為(為參數(shù)).
(1)求,的直角坐標(biāo)方程;
(2)與,交于不同四點(diǎn),這四點(diǎn)在上的排列順次為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列的前項(xiàng)和為,且,
(1)求證:數(shù)列為等比數(shù)列,并求出數(shù)列的通項(xiàng)公式;
(2)是否存在實(shí)數(shù),對(duì)任意,不等式恒成立?若存在,求出的取值范圍,若不存在請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有三個(gè)鄉(xiāng)鎮(zhèn),分別位于一個(gè)矩形的兩個(gè)頂點(diǎn)M,N及的中點(diǎn)S處,,現(xiàn)要在該矩形的區(qū)域內(nèi)(含邊界),且與M,N等距離的一點(diǎn)O處設(shè)一個(gè)宣講站,記O點(diǎn)到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和為.
(1)設(shè),試將L表示為x的函數(shù)并寫出其定義域;
(2)試?yán)茫?/span>1)的函數(shù)關(guān)系式確定宣講站O的位置,使宣講站O到三個(gè)鄉(xiāng)鎮(zhèn)的距離之和最。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)整數(shù)模2014互不同余,整數(shù)模2014也互不同余.證明:可將重新排列為,使得模4028互不同余.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下表中的數(shù)陣為“森德拉姆數(shù)篩”,其特點(diǎn)是每行每列都成等差數(shù)列,則數(shù)字2019在表中出現(xiàn)的次數(shù)為________
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列四個(gè)結(jié)論:
①命題“”的否定是“”;
②若是真命題,則可能是真命題;
③“且”是“”的充要條件;
④當(dāng)時(shí),冪函數(shù)在區(qū)間上單調(diào)遞減.
其中正確的是
A. ①③ B. ②④ C. ①④ D. ②③
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的離心率為2,過(guò)點(diǎn)、斜率為1的直線與雙曲線交于、兩點(diǎn)且,.
(1)求雙曲線方程。
(2)設(shè)為雙曲線右支上動(dòng)點(diǎn),為雙曲線的右焦點(diǎn),在軸負(fù)半軸上是否存在定點(diǎn),使得?若存在,求出點(diǎn)的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在△ABC中,角A,B,C的對(duì)邊分別為a,b,c,已知4(tanA+tanB)=+,則cosC的最小值為__________.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com