分析 利用類比的方法,結(jié)合向量的運(yùn)算,即可證明結(jié)論.
解答 解:設(shè)空間向量$\overrightarrow{α}$=(a1,b1,c1),$\overrightarrow{β}$=(a2,b2,c2),則|$\overrightarrow{α}$|2=a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$,|$\overrightarrow{β}$|2=a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$,
$\overrightarrow{α}$•$\overrightarrow{β}$=a1a2+b1b2+c1c2,
∵|$\overrightarrow{α}$•β|≤|$\overrightarrow{α}$|•|$\overrightarrow{β}$|,
∴|a1a2+b1b2+c1c2|2≤(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$)
∴(a${\;}_{1}^{2}$+b${\;}_{1}^{2}$+c${\;}_{1}^{2}$)(a${\;}_{2}^{2}$+b${\;}_{2}^{2}$+c${\;}_{2}^{2}$)≥(a1a2+b1b2+c1c2)2.
點(diǎn)評(píng) 本題是中檔題,考查不等式的證明與應(yīng)用,考查的閱讀能力,知識(shí)的應(yīng)用能力,邏輯推理能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 命題“若m2+n2=0,則m=0且n=0”的否命題是“若m2+n2≠0,則m≠0或n≠0” | |
B. | 命題“若x=0,則x2-x=0”逆否命題為真命題 | |
C. | 若命題P:?n∈N,n2>2n,則¬P:?n∈N,n2≤2n | |
D. | 若“p∧q”為假命題,則“p∨q”為真命題 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | $\frac{{\sqrt{2}}}{2}$ | C. | $2-\frac{{\sqrt{2}}}{2}$ | D. | $2+\frac{{\sqrt{2}}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com