雙曲線:x2-
y2
4
=1
的漸近線方程和離心率分別是( 。
A.y=±
1
2
x,e=
5
B.y=±2x,e=
3
C.y=±
1
2
x,e=
3
D.y=±2x,e=
5
雙曲線:x2-
y2
4
=1
的a=1,b=2,c=
a2+b2
=
5

∴雙曲線的漸近線方程為y=±
b
a
x=±2x;離心率e=
c
a
=
5

故選 D
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓和雙曲線
y2
16
-
x2
m
=1(m>0)有相同的焦點,P(3,4)是橢圓和雙曲線漸近線的一個交點,求m的值及橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設F為雙曲線
x2
16
-
y2
9
=1
的左焦點,在x軸上F點的右側(cè)有一點A,以FA為直徑的圓與雙曲線左、右兩支在x軸上方的交點分別為M,N,則
|FN|-|FM|
|FA|
的值為( 。
A.
2
5
B.
5
2
C.
5
4
D.
4
5

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

若焦點在x軸的雙曲線的一條漸近線為y=
1
2
x
,則它的離心率e=______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

雙曲線
x2
10
-
y2
6
=1的焦點坐標是( 。
A.(-2,0),(2,0)B.(0,-2),(0,2)C.(0,-4),(0,4)D.(-4,0),(4,0)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設F1,F(xiàn)2是雙曲線
x2
4
-y2=1
的左右焦點,點P在雙曲線上,且∠F1PF2=90°,則點P到x軸的距離為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知雙曲線
x2
a2
-y2=1(a>0)的一個焦點與拋物線x=
1
8
y2的焦點重合,則此雙曲線的離心率為( 。
A.
3
3
2
B.
3
C.
2
3
3
D.
4
3
3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

若雙曲線
x2
a2
-
y2
b2
=1(a>0,b>0)
與直線y=
3
x無交點,則離心率e的取值范圍( 。
A.(1,2)B.(1,2]C.(1,
5
D.(1,
5
]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知雙曲線
x2
16
-
y2
4
=1
上一點P到一個焦點的距離為10,則它到另一個焦點的距離為______.

查看答案和解析>>

同步練習冊答案