【題目】某市在精準(zhǔn)扶貧和生態(tài)文明建設(shè)的專項(xiàng)工作中,為改善農(nóng)村生態(tài)環(huán)境,建設(shè)美麗鄉(xiāng)村,開(kāi)展農(nóng)村生活用水排污管道“村村通”.已知排污管道外徑為1米,當(dāng)兩條管道并行經(jīng)過(guò)一塊農(nóng)田時(shí),如圖,要求兩根管道最近距離不小于0.25米,埋沒(méi)的最小覆土厚度(路面至管頂)不低于0.5米.埋設(shè)管道前先挖掘一條橫截面為等腰梯形的溝渠,且管道所在的兩圓分別與兩腰相切.設(shè).
(1)為了減少農(nóng)田的損毀,則當(dāng)為何值時(shí),挖掘的土方量最少?
(2)水管用吊車放入渠底前需了解吊繩的長(zhǎng)度,在(1)的條件下計(jì)算長(zhǎng)度.
【答案】(1)時(shí),挖掘的土方量最少(2)長(zhǎng)度約為1米
【解析】
(1) 顯然取最小覆土厚度等于0.5米,兩根管道最近距離等于0.25米時(shí)梯形面積最小, 設(shè)圓與底切于點(diǎn),連接,則,過(guò)點(diǎn)作,垂足為,然后將和用表示后,求出面積關(guān)于的表達(dá)式,然后利用基本不等式求出面積取最小值時(shí)的,并且此時(shí)滿足,故即為所求.
(2)在直角三角形求出后,在三角形中用余弦定理可求得.
(1)根據(jù)題意等腰梯形面積最小時(shí),挖掘土方量最少,顯然取最小覆土厚度等于0.5米,兩根管道最近距離等于0.25米時(shí)梯形面積最小.設(shè)圓與底切于點(diǎn),連接,則,過(guò)點(diǎn)作,垂足為.如圖:
因?yàn)?/span>,所以,
直角三角形和直角三角形中,米,米,
所以,
所以,
所以
,
所以
.
當(dāng)且僅當(dāng),即時(shí)等號(hào)成立,
此時(shí),,且,符合題意.
所以時(shí),挖掘的土方量最少.
(2)由(1)知,,在直角三角形中,
米,
在三角形中,,米,由余弦定理得;
,所以長(zhǎng)度約為1米.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校從高二年級(jí)學(xué)生中隨機(jī)抽取60名學(xué)生,將其期中考試的政治成績(jī)(均為整數(shù))分成六段: , , ,…后得到如下頻率分布直方圖.
(1)根據(jù)頻率分布直方圖,估計(jì)該校高二年級(jí)學(xué)生期中考試政治成績(jī)的平均分、眾數(shù)、中位數(shù);(小數(shù)點(diǎn)后保留一位有效數(shù)字)
(2)用分層抽樣的方法在各分?jǐn)?shù)段的學(xué)生中抽取一個(gè)容量為20的樣本,則各分?jǐn)?shù)段抽取的人數(shù)分別是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】由共青團(tuán)中央宣傳部、中共山東省委宣傳部、共青團(tuán)山東省委、山東廣播電視臺(tái)聯(lián)合出品的《國(guó)學(xué)小名士》第三季于2019年11月24日晚在山東衛(wèi)視首播.本期最精彩的節(jié)目是的飛花令:出題者依次給出所含數(shù)字3.141592653……答題者則需要說(shuō)出含有此數(shù)字的詩(shī)句.雷海為、楊強(qiáng)、馬博文、張益銘與飛花令少女賀莉然同場(chǎng),賽況激烈讓人屏住呼吸,最終的飛花令突破204位.某校某班級(jí)開(kāi)元旦聯(lián)歡會(huì),同學(xué)們也舉行了一場(chǎng)的飛花令,為了增加趣味性,他們的規(guī)則如下:答題者先擲兩個(gè)骰子,得到的點(diǎn)數(shù)分別記為,再取出的小數(shù)點(diǎn)后第位和第位的數(shù)字,然后說(shuō)出含有這兩個(gè)數(shù)字的一個(gè)詩(shī)句,若能說(shuō)出則可獲得獎(jiǎng)品.按照這個(gè)規(guī)則,取出的兩個(gè)數(shù)字相同的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】每年的寒冷天氣都會(huì)帶熱“御寒經(jīng)濟(jì)”,以交通業(yè)為例,當(dāng)天氣太冷時(shí),不少人都會(huì)選擇利用手機(jī)上的打車軟件在網(wǎng)上預(yù)約出租車出行,出租車公司的訂單數(shù)就會(huì)增加.下表是某出租車公司從出租車的訂單數(shù)據(jù)中抽取的5天的日平均氣溫(單位:℃)與網(wǎng)上預(yù)約出租車訂單數(shù)(單位:份);
日平均氣溫(℃) | 6 | 4 | 2 | ||
網(wǎng)上預(yù)約訂單數(shù) | 100 | 135 | 150 | 185 | 210 |
(1)經(jīng)數(shù)據(jù)分析,一天內(nèi)平均氣溫與該出租車公司網(wǎng)約訂單數(shù)(份)成線性相關(guān)關(guān)系,試建立關(guān)于的回歸方程,并預(yù)測(cè)日平均氣溫為時(shí),該出租車公司的網(wǎng)約訂單數(shù);
(2)天氣預(yù)報(bào)未來(lái)5天有3天日平均氣溫不高于,若把這5天的預(yù)測(cè)數(shù)據(jù)當(dāng)成真實(shí)的數(shù)據(jù),根據(jù)表格數(shù)據(jù),則從這5天中任意選取2天,求恰有1天網(wǎng)約訂單數(shù)不低于210份的概率.
附:回歸直線的斜率和截距的最小二乘法估計(jì)分別為:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為迎接“五一”節(jié)的到來(lái),某單位舉行“慶五一,展風(fēng)采”的活動(dòng).現(xiàn)有6人參加其中的一個(gè)節(jié)目,該節(jié)目由兩個(gè)環(huán)節(jié)可供參加者選擇,為增加趣味性,該單位用電腦制作了一個(gè)選擇方案:按下電腦鍵盤(pán)“Enter”鍵則會(huì)出現(xiàn)模擬拋兩枚質(zhì)地均勻骰子的畫(huà)面,若干秒后在屏幕上出現(xiàn)兩個(gè)點(diǎn)數(shù)和,并在屏幕的下方計(jì)算出的值.現(xiàn)規(guī)定:每個(gè)人去按“Enter”鍵,當(dāng)顯示出來(lái)的小于時(shí)則參加環(huán)節(jié),否則參加環(huán)節(jié).
(1)求這6人中恰有2人參加該節(jié)目環(huán)節(jié)的概率;
(2)用分別表示這6個(gè)人中去參加該節(jié)目兩個(gè)環(huán)節(jié)的人數(shù),記,求隨機(jī)變量的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出下列結(jié)論:在回歸分析中
(1)可用相關(guān)指數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;
(2)可用殘差平方和判斷模型的擬合效果,殘差平方和越大,模型的擬合效果越好;
(3)可用相關(guān)系數(shù)的值判斷模型的擬合效果,越大,模型的擬合效果越好;
(4)可用殘差圖判斷模型的擬合效果,殘差點(diǎn)比較均勻地落在水平的帶狀區(qū)域中,說(shuō)明這樣的模型比較合適.帶狀區(qū)域的寬度越窄,說(shuō)明模型的擬合精度越高.
以上結(jié)論中,不正確的是( )
A.(1)(3)B.(2)(3)C.(1)(4)D.(3)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商場(chǎng)為改進(jìn)服務(wù)質(zhì)量,在進(jìn)場(chǎng)購(gòu)物的顧客中隨機(jī)抽取了人進(jìn)行問(wèn)卷調(diào)查.調(diào)查后,就顧客“購(gòu)物體驗(yàn)”的滿意度統(tǒng)計(jì)如下:
滿意 | 不滿意 | |
男 | ||
女 |
是否有的把握認(rèn)為顧客購(gòu)物體驗(yàn)的滿意度與性別有關(guān)?
若在購(gòu)物體驗(yàn)滿意的問(wèn)卷顧客中按照性別分層抽取了人發(fā)放價(jià)值元的購(gòu)物券.若在獲得了元購(gòu)物券的人中隨機(jī)抽取人贈(zèng)其紀(jì)念品,求獲得紀(jì)念品的人中僅有人是女顧客的概率.
附表及公式:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知雙曲線的左、右頂點(diǎn)分別為,焦點(diǎn)在軸上的橢圓以為頂點(diǎn),且離心率為.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)設(shè)過(guò)點(diǎn)的直線交雙曲線右支于另一點(diǎn),交橢圓于另一點(diǎn),記,的面積分別為,若,求直線的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左,右焦點(diǎn)分別為,,,M是橢圓E上的一個(gè)動(dòng)點(diǎn),且的面積的最大值為.
(1)求橢圓E的標(biāo)準(zhǔn)方程,
(2)若,,四邊形ABCD內(nèi)接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com