(本小題滿分12分)
如圖,已知⊙所在的平面,AB是⊙的直徑,,是⊙上一點,且,分別為中點。
(1)求證:平面;
(2)求證:;
(3)求三棱錐-的體積。
科目:高中數(shù)學 來源: 題型:解答題
如圖,平面ABCD⊥平面ABEF,又ABCD是正方形,ABEF是矩形,且G是EF的中
點.
(1)求證:平面AGC⊥平面BGC;
(2)求GB與平面AGC所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(滿分12分)如右圖,在正三棱柱ABC—A1B1C1中,AA1=AB,D是AC的中點。
(Ⅰ)求證:B1C//平面A1BD;
(Ⅰ)求二面角A—A1B—D的余弦值。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖:在三棱錐D-ABC中,已知是正三角形,AB平面BCD,,E為BC的中點,F(xiàn)在棱AC上,且
(1)求三棱錐D-ABC的表面積;
(2)求證AC⊥平面DEF;
(3)若M為BD的中點,問AC上是否存在一點N,使MN∥平面DEF?若存在,說明點N的位置;若不存在,試說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
如圖,已知多面體ABCDE中,AB⊥平面ACD,DE⊥平面ACD,AC=AD=CD=DE=2,AB=1,F為CD的中點.
(Ⅰ)求證:AF⊥平面CDE;
(Ⅱ)求面ACD和面BCE所成銳二面角的大。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本題滿分12分) 本題共有2個小題,第1小題滿分6分,第2小題滿分6分.
如圖已知四棱錐的底面是邊長為6的正方形,側(cè)棱的長為8,且垂直于底面,點分別是的中點.求
(1)異面直線與所成角的大。ńY(jié)果用反三角函數(shù)值表示);
(2)四棱錐的表面積.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分l2分)
如圖,在多面體ABCDEF中,ABCD為菱形,ABC=60,EC面ABCD,F(xiàn)A面ABCD,G為BF的中點,若EG//面ABCD.
(1)求證:EG面ABF;
(2)若AF=AB,求二面角B—EF—D的余弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
(本小題滿分12分)
四棱錐,面⊥面.側(cè)面是以為直角頂點的等腰直角三角形,底面為直角梯形,,∥,⊥,為上一點,且.
(Ⅰ)求證⊥;
(Ⅱ)求二面角的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com