【題目】已知函數(shù).

1)討論函數(shù)的單調(diào)性;

2)設(shè),證明:曲線沒有經(jīng)過坐標原點的切線.

【答案】1)在單調(diào)遞減,在單調(diào)遞增;(2)證明見解析

【解析】

1)先求得導(dǎo)函數(shù),根據(jù)導(dǎo)函數(shù)的符號即可判斷單調(diào)區(qū)間.

2)先討論過原點的切線斜率是否存在.當斜率不存在時,切線為y,分析可知不成立.當斜率存在時,可設(shè)出切線方程和切點坐標.建立方程組,判斷方程組無解,即可證明不存在這樣的切線.

1定義域為,

.

,,

,.

所以單調(diào)遞減,單調(diào)遞增.

2)因為定義域為,所以軸不是曲線的切線.

當經(jīng)過坐標原點的直線不是軸時,設(shè)是曲線的切線,切點是.

因為,所以.

消去,.

由(1)知處取得最小值,,

所以無解.

因此曲線沒有經(jīng)過坐標原點的切線.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義域是上的連續(xù)函數(shù)圖像的兩個端點為、,是圖像上任意一點,過點作垂直于軸的直線交線段于點(點與點可以重合),我們稱的最大值為該函數(shù)的曲徑,下列定義域是上的函數(shù)中,曲徑最小的是(

A.B.

C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)各項均為正數(shù)的數(shù)列的前項和為,已知,且對一切都成立.

(1)當.

①求數(shù)列的通項公式;

②若,求數(shù)列的前項的和;

(2)是否存在實數(shù),使數(shù)列是等差數(shù)列.如果存在,求出的值;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C)的左右焦點分別為,,離心率為,橢圓C上的一點P的距離之和等于4.

1)求橢圓C的標準方程;

2)設(shè),過橢圓C的右焦點的直線與橢圓C交于AB兩點,若滿足恒成立,求m的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某商家統(tǒng)計了去年,兩種產(chǎn)品的月銷售額(單位:萬元),繪制了月銷售額的雷達圖,圖中點表示產(chǎn)品2月份銷售額約為20萬元,點表示產(chǎn)品9月份銷售額約為25萬元.

根據(jù)圖中信息,下面統(tǒng)計結(jié)論錯誤的是(

A.產(chǎn)品的銷售額極差較大B.產(chǎn)品銷售額的中位數(shù)較大

C.產(chǎn)品的銷售額平均值較大D.產(chǎn)品的銷售額波動較小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

時,取得極值,求的值并判斷是極大值點還是極小值點;

當函數(shù)有兩個極值點,,且時,總有成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為了了解某學(xué)校高二年級學(xué)生的物理成績,從中抽取名學(xué)生的物理成績百分制作為樣本,按成績分成5組:,頻率分布直方圖如圖所示,成績落在中的人數(shù)為20

男生

女生

合計

優(yōu)秀

不優(yōu)秀

合計

1的值;

2根據(jù)樣本估計總體的思想,估計該校高二學(xué)生物理成績的平均數(shù)和中位數(shù);

3成績在80分以上含80分為優(yōu)秀,樣本中成績落在中的男、女生人數(shù)比為1:2,成績落在中的男、女生人數(shù)比為3:2,完成列聯(lián)表,并判斷是否所有95%的把握認為物理成績優(yōu)秀與性別有關(guān)

參考公式和數(shù)據(jù):

050

005

0025

0005

0455

3841

5024

7879

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】我國古代數(shù)學(xué)著作《孫子算經(jīng)》中記有如下問題:“今有五等諸侯,其分橘子六十顆,人別加三顆”,問:“五人各得幾何?”其意思為:“現(xiàn)在有5個人分60個橘子,他們分得的橘子個數(shù)成公差為3的等差數(shù)列,問5人各得多少橘子.”根據(jù)這個問題,下列說法錯誤的是(

A.得到橘子最多的諸侯比最少的多12

B.得到橘子的個數(shù)排名為正數(shù)第3和倒數(shù)第3的是同一個人

C.得到橘子第三多的人所得的橘子個數(shù)是12

D.所得橘子個數(shù)為倒數(shù)前3的諸侯所得的橘子總數(shù)為24

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,四邊形為正方形, 平面, , 上一點,且.

(1)求證: 平面;

(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案