已知直線l:y=tanα(x+2
2
)交橢圓x2+9y2=9于A、B兩點(diǎn),若α為l的傾斜角,且|AB|的長(zhǎng)不小于短軸的長(zhǎng),求α的取值范圍.
分析:確定某一變量的取值范圍,應(yīng)設(shè)法建立關(guān)于這一變量的不等式,題設(shè)中已經(jīng)明確給定弦長(zhǎng)≥2b,最后可歸結(jié)為計(jì)算弦長(zhǎng)求解不等式的問(wèn)題.
解答:解:將l方程與橢圓方程聯(lián)立,消去y,得(1+9tan2α)x2+36
2
tan2α•x+72tan2α-9=0,
∴|AB|=
1+tan2α
|x2-x1|=
1+tan2α
(1+9tan2α)
=
6tan2α+6
1+9tan2α

由|AB|≥2,得tan2α≤
1
3
,
∴-
3
3
≤tanα≤
3
3

∴α的取值范圍是[0,
π
6
]∪[
6
,π).
點(diǎn)評(píng):本題考查直線的傾斜角,解題時(shí)要注意公式的靈活運(yùn)用,認(rèn)真解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知A(1,0),B(4,0),動(dòng)點(diǎn)T(x,y)滿足
|TA|
|TB|
=
1
2
,設(shè)動(dòng)點(diǎn)T的軌跡是曲線C,直線l:y=kx+1與曲線C交于P,Q兩點(diǎn).
(1)求曲線C的方程;
(2)若
OP
OQ
=-2
,求實(shí)數(shù)k的值;
(3)過(guò)點(diǎn)(0,1)作直線l1與l垂直,且直線l1與曲線C交于M,N兩點(diǎn),求四邊形PMQN面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案