【題目】已知次多項(xiàng)式.如果在一種算法中,計(jì)算的值共需要次乘法,計(jì)算的值共需要9次運(yùn)算(6次乘法,3次加法),那么計(jì)算的值共需要______次運(yùn)算.下面給出一種減少運(yùn)算次數(shù)的算法:.利用該算法,計(jì)算的值共需要6次運(yùn)算,計(jì)算的值共需要______次運(yùn)算;
【答案】
【解析】
常規(guī)算法計(jì)算多項(xiàng)式的值時(shí),共需要乘法次,需要加法次,即得總的運(yùn)算次數(shù). 使用減少運(yùn)算次數(shù)的算法(秦九韶算法)計(jì)算的值時(shí),共需要次乘法,次加法,可得總的運(yùn)算次數(shù).
利用常規(guī)算法計(jì)算多項(xiàng)式的值時(shí),
算分別需要次乘法,
計(jì)算時(shí)共需要乘法次,需要加法次.
計(jì)算的值共需要次運(yùn)算.
使用減少運(yùn)算次數(shù)的算法計(jì)算的值時(shí),
共需要次乘法,次加法.
計(jì)算的值共需要次運(yùn)算.
故答案為:;.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】 在平行四邊形ABCD中,A(1,1),=(6,0),點(diǎn)M是線段AB的中點(diǎn),線段CM與BD交于點(diǎn)P.(1) 若=(3,5),求點(diǎn)C的坐標(biāo);(2) 當(dāng)||=||時(shí),求點(diǎn)P的軌跡.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知常數(shù),向量,,經(jīng)過定點(diǎn)且以為方向向量的直線與經(jīng)過定點(diǎn)且以為方向向量的直線交于點(diǎn),其中.
(1)求點(diǎn)的軌跡的方程;
(2)若,過的直線交曲線于,兩點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】A,B兩組各有7位病人,他們服用某種藥物后的康復(fù)時(shí)間(單位:天)記錄如下:
A組:10,11,12,13,14,15,16;
B組:12,13,15,16,17,14,.
假設(shè)所有病人的康復(fù)時(shí)間相互獨(dú)立,從A,B兩組隨機(jī)各選1人,A組選出的人記為甲,B組選出的人記為乙.
(1)求甲的康復(fù)時(shí)間不少于14天的概率;
(2)如果,求甲的康復(fù)時(shí)間比乙的康復(fù)時(shí)間長(zhǎng)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司對(duì)旗下的甲、乙兩個(gè)門店在1至9月份的營(yíng)業(yè)額(單位:萬(wàn)元)進(jìn)行統(tǒng)計(jì)并得到如圖折線圖.
下面關(guān)于兩個(gè)門店?duì)I業(yè)額的分析中,錯(cuò)誤的是( )
A.甲門店的營(yíng)業(yè)額折線圖具有較好的對(duì)稱性,故而營(yíng)業(yè)額的平均值約為32萬(wàn)元
B.根據(jù)甲門店的營(yíng)業(yè)額折線圖可知,該門店?duì)I業(yè)額的平均值在[20,25]內(nèi)
C.根據(jù)乙門店的營(yíng)業(yè)額折線圖可知,其營(yíng)業(yè)額總體是上升趨勢(shì)
D.乙門店在這9個(gè)月份中的營(yíng)業(yè)額的極差為25萬(wàn)元
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(3’+7’+8’)已知以a1為首項(xiàng)的數(shù)列{an}滿足:an+1=.
(1)當(dāng)a1=1,c=1,d=3時(shí),求數(shù)列{an}的通項(xiàng)公式;
(2)當(dāng)0<a1<1,c=1,d=3時(shí),試用a1表示數(shù)列{an}的前100項(xiàng)的和S100;
(3)當(dāng)0<a1<(m是正整數(shù)),c=,d≥3m時(shí),求證:數(shù)列a2-,a3m+2-,a6m+2-,a9m+2-成等比數(shù)列當(dāng)且僅當(dāng)d=3m.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近年來,網(wǎng)絡(luò)電商已經(jīng)悄然進(jìn)入了廣大市民的日常生活,并慢慢改變了人們的消費(fèi)方式為了更好地服務(wù)民眾,某電商在其官方APP中設(shè)置了用戶評(píng)價(jià)反饋系統(tǒng),以了解用戶對(duì)商品狀況和優(yōu)惠活動(dòng)的評(píng)價(jià)現(xiàn)從評(píng)價(jià)系統(tǒng)中隨機(jī)抽出200條較為詳細(xì)的評(píng)價(jià)信息進(jìn)行統(tǒng)計(jì),商品狀況和優(yōu)惠活動(dòng)評(píng)價(jià)的2×2列聯(lián)表如下:
對(duì)優(yōu)惠活動(dòng)好評(píng) | 對(duì)優(yōu)惠活動(dòng)不滿意 | 合計(jì) | |
對(duì)商品狀況好評(píng) | 100 | 20 | 120 |
對(duì)商品狀況不滿意 | 50 | 30 | 80 |
合計(jì) | 150 | 50 | 200 |
(I)能否在犯錯(cuò)誤的概率不超過0.001的前提下認(rèn)為優(yōu)惠活動(dòng)好評(píng)與商品狀況好評(píng)之間有關(guān)系?
(Ⅱ)為了回饋用戶,公司通過APP向用戶隨機(jī)派送每張面額為0元,1元,2元的三種優(yōu)惠券用戶每次使用APP購(gòu)物后,都可獲得一張優(yōu)惠券,且購(gòu)物一次獲得1元優(yōu)惠券,2元優(yōu)惠券的概率分別是,,各次獲取優(yōu)惠券的結(jié)果相互獨(dú)立若某用戶一天使用了APP購(gòu)物兩次,記該用戶當(dāng)天獲得的優(yōu)惠券面額之和為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
參考數(shù)據(jù)
P(K2≥k) | 0.150 | 0.100 | 0.050 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
參考公式:K2,其中n=a+b+c+d
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在三棱柱ABC﹣A1B1C1中,E是棱AB的中點(diǎn),動(dòng)點(diǎn)F是側(cè)面ACC1A1(包括邊界)上一點(diǎn),若EF//平面BCC1B1,則動(dòng)點(diǎn)F的軌跡是( )
A.線段B.圓弧
C.橢圓的一部分D.拋物線的一部分
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓的焦點(diǎn)在軸上.
(1)若橢圓的焦距為1,求橢圓的方程;
(2)設(shè)分別是橢圓的左、右焦點(diǎn),為橢圓上的第一象限內(nèi)的點(diǎn),直線交軸與點(diǎn),并且,證明:當(dāng)變化時(shí),點(diǎn)在某定直線上.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com