若函數(shù)y=
1
loga(x2-ax+3)
的定義域為R,求實數(shù)a的取值范圍.
考點:對數(shù)函數(shù)的定義域
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:loga(x2-ax+3)是分母,故x2-ax+3不能等于1,二次函數(shù)開口朝上,又∵x取值是全體實數(shù),∴對于所有的x,x2-ax+3>1,即二次函數(shù)最低點的縱坐標(biāo)大于1,求得a的范圍.
解答: 解:∵函數(shù)y=
1
loga(x2-ax+3)
的定義域為R,
∴x2-ax+3的最小值
4×1×3-(-a)2
4
>1
,解得-2
2
<a<2
2

又a>0,
0<a<2
2

∴實數(shù)a的取值范圍是(0,2
2
).
點評:本題考查了對數(shù)函數(shù)的定義域,考查了數(shù)學(xué)轉(zhuǎn)化思想方法,關(guān)鍵是對題意的理解,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x-2>3},B={x|2x-3>3x-a}.
(1)若a=5,求A∪B.
(2)求A∩B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
OA
=
a
OB
=
b
,|
a
|=|
b
|=2,|
a
+
b
|=2
3
,則
a
b
的夾角為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=asinx+bcosx(a、b為常數(shù)),若f(
π
4
)=0,f(π)=
2
,求f(x)的解析式,并化為f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<
π
2
)的形式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
ax2+1
bx+c
,(a,b,c∈Z)是奇函數(shù),又f(1)=2,f(2)<3.
(1)求a,b,c的值;
(2)證明:當(dāng)x>1時f(x)為增函數(shù).
2
2
<x<1,f(x)為減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)f(x)=|x+1|+
(x+2)2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

集合A={0,1,x},B={x|x2,y,-1},若A=B,則2x+3y=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)A={a1,a2,…an}⊆M,(n∈N*,n≥2)若其元素滿足:a1+a2+a3+a4+…+an=a1×a2×a3×a4×…×an,則稱集合A為集合M的“n元封閉集”.
(1)寫出實數(shù)集R的一個“二元封閉集”;
(2)證明:正整數(shù)集N*上不存在“二元封閉集”;
(3)求出正整數(shù)數(shù)集N*上的所有“三元封閉集”.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對任意x∈R,函數(shù)f(x)都滿足f(x+2)=f(x),且當(dāng)x∈[0,2]時,f(x)=x(2-x).則方程f(x)=log4|x|在區(qū)間[-4,4]內(nèi)的解的個數(shù)是( 。
A、4B、5C、6D、7

查看答案和解析>>

同步練習(xí)冊答案