二項(xiàng)式(
x
2
-
1
3x
)
4
的展開(kāi)式中常數(shù)項(xiàng)是
 
考點(diǎn):二項(xiàng)式系數(shù)的性質(zhì)
專(zhuān)題:計(jì)算題,二項(xiàng)式定理
分析:利用二項(xiàng)展開(kāi)式的通項(xiàng)公式求出第r+1項(xiàng),令x的指數(shù)為0得常數(shù)項(xiàng).
解答: 解:(
x
2
-
1
3x
)
4
的展開(kāi)式的通項(xiàng)是Tr+1=
C
r
4
•(
x
2
)4-r
•(
-1
3x
)r

=
C
r
4
2r-4•(-1)rx4-
4
3
r
,
令4-
4
3
r=0,解得r=3.
故展開(kāi)式的常數(shù)項(xiàng)為
C
3
4
23-4•(-1)3
=-2.
故答案為:-2.
點(diǎn)評(píng):本題考查二項(xiàng)展開(kāi)式的通項(xiàng)公式是解決二項(xiàng)展開(kāi)式的特定項(xiàng)問(wèn)題的工具.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在平面直角坐標(biāo)系中,已知A(1,-2),B(4,0),P(a,1),N(a+1,1),若四邊形PABN的周長(zhǎng)最小,則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

不等式4x-5<3的解集為(  )
A、x>2B、x<2
C、(2,+∞)D、(-∞,2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三次函數(shù)f(x)=x3+ax2+bx+c在x=1和x=-1時(shí)取極值,且f(-2)=-4.
(1)求a與b的值;
(2)求函數(shù)y=f(x)的單調(diào)區(qū)間和極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+1(a∈R)的值域?yàn)閇0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m,m+6),則實(shí)數(shù)c的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

解關(guān)于x的不等式
k(1-x)
x-2
+1<0(k<1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若二次函數(shù)y=3x2+2(a-1)x+b在區(qū)間(-∞,1]上為減函數(shù),那么( 。
A、a<-2B、a≥-2
C、a≤-2D、a>-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+ax+1(a∈R)的值域?yàn)閇0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m,m+6),則實(shí)數(shù)m的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)y=log2(x2+2x-3)的單調(diào)增區(qū)間是
 

查看答案和解析>>

同步練習(xí)冊(cè)答案