按如圖表示的算法,若輸入一個(gè)小于10的正整數(shù)n,則輸出n的值是
 

考點(diǎn):程序框圖
專題:算法和程序框圖
分析:算法的功能是求滿足條件n(n-1)>100的最小的正整數(shù),根據(jù)10×9=90<100;11×10=110>100,確定答案.
解答: 解:由程序框圖知:算法的功能是求滿足條件n(n-1)>100的最小的正整數(shù),
∵10×9=90<100;11×10=110>100,
∴滿足條件n(n-1)>100的最小的正整數(shù)為11,
故答案為:11.
點(diǎn)評(píng):本題考查了循環(huán)結(jié)構(gòu)的程序框圖,根據(jù)框圖的流程判斷算法的功能是關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知F1是橢圓C1
y2
a2
+
x2
b2
=1(a>b>0)與拋物線C2:x2=4y共同的焦點(diǎn),M是C1與C2在第二象限的交點(diǎn),且|MF1|=
5
3

(1)試求橢圓C1的方程;
(2)已知點(diǎn)P是橢圓C1上的動(dòng)點(diǎn),GH是圓x2+(y+1)2=1的直徑,試求
PG
PH
的最大值;
(3)與圓x2+(y+1)2=1相切的直線l:y=k(x+t)(t≠0)交橢圓于A、B兩點(diǎn),若橢圓上的點(diǎn)P滿足
OA
+
OB
OP
,求實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知三棱錐P-ABC的三條側(cè)棱兩兩垂直,且長(zhǎng)分別為a,b,c,又(a2+b2)c=
6
,側(cè)面PAB與底面ABC所成的角為60°,當(dāng)三棱錐的體積最大時(shí),則a的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)n∈N+,f(n)=1+
1
2
+
1
3
+…+
1
n
,由計(jì)算得f(2)=
3
2
,f(4)>2,f(8)>
5
2
,f(32)>
7
2
,觀察上述結(jié)果,可推出一般的結(jié)論為:f(2n)≥
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知模長(zhǎng)為1,2,3的三個(gè)向量
a
b
,
c
,且
a
b
=
b
c
=
c
a
=0,則|
a
+
b
+
c
|的值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

方程x2-px+6=0的解集為M,方程x2+6x-q=0的解集為N,且M∪N={-8,2,3},則p+q=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于x不等式ax2+bx+c>0的解集為α<x<β,則cx2+bx+a<0的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將函數(shù)f(x)=sin(x-
π
6
)圖象上所有點(diǎn)的橫坐標(biāo)縮短到原來(lái)的一半(縱坐標(biāo)不變),再將它的圖象向左平移φ個(gè)單位(φ>0),得到了一個(gè)偶函數(shù)的圖象,則φ的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列語(yǔ)句是命題的有(  )
A、x2-3≥x
B、與一條直線相交的兩直線平行嗎?
C、?x∈Z,3x+1=5x
D、好難的題目!

查看答案和解析>>

同步練習(xí)冊(cè)答案