【題目】邊長為2的正三角形ABC中,點D,E,G分別是邊AB,AC,BC的中點,連接DE,連接AGDE于點現(xiàn)將沿DE折疊至的位置,使得平面平面BCED,連接A1G,EG.

證明:DE∥平面A1BC

求點B到平面A1EG的距離.

【答案】(1)見解析;(2)

【解析】

(1)推導(dǎo)出DEBC,由此能證明DE∥平面A1BC

(2)以F為原點,FGx軸,FEy軸,FA1z軸,建立空間直角坐標(biāo)系,利用向量法能求出點B到平面A1EG的距離.

邊長為2的正三角形ABC中,點D,E,G分別是邊AB,ACBC的中點,

連接DE,連接AG交DE于點F.

,

平面,平面,

平面

沿DE折疊至的位置,使得平面平面BCED,連接,EG.

以F為原點,F(xiàn)G為x軸,F(xiàn)E為y軸,為z軸,建立空間直角坐標(biāo)系,

1,,0,,0,

,,,

設(shè)平面的法向量y,,

,取,得,

點B到平面的距離

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,正四棱柱的底面邊長為,側(cè)棱長為1,求:

(1)直線與直線所成角的余弦值;

(2)平面與平面所成二面角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)集合,集合.

(1)若“”是“”的必要條件,求實數(shù)的取值范圍;

(2)若中只有一個整數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處取得極小值.

(1)求實數(shù)的值;

(2)設(shè),其導(dǎo)函數(shù)為,若的圖象交軸于兩點,設(shè)線段的中點為,試問是否為的根?說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在底面是邊長為6的正方形的四棱錐P--ABCD中,點P在底面的射影H為正方形ABCD的中心,異面直線PB與AD所成角的正切值為,則四棱錐P--ABCD的內(nèi)切球與外接球的半徑之比為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),其中為常數(shù).

(1)若,求函數(shù)的極值;

(2)若函數(shù)上單調(diào)遞增,求實數(shù)的取值范圍;

(3)若,設(shè)函數(shù)上的極值點為,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】邊長為2的正三角形ABC中,點D,E,G分別是邊AB,AC,BC的中點,連接DE,連接AGDE于點現(xiàn)將沿DE折疊至的位置,使得平面平面BCED,連接A1G,EG.

證明:DE∥平面A1BC

求點B到平面A1EG的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】【選修4-4:坐標(biāo)系與參數(shù)方程】

極坐標(biāo)系的極點為直角坐標(biāo)系的原點,極軸為軸的正半軸,兩神坐標(biāo)系中的長度單位相同.已知曲線的極坐標(biāo)方程為,

(Ⅰ)求曲線的直角坐標(biāo)方程;

(Ⅱ)在曲線上求一點,使它到直線 為參數(shù))的距離最短,寫出點的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某小區(qū)中央廣場由兩部分組成,一部分是邊長為的正方形,另一部分是以為直徑的半圓,其圓心為.規(guī)劃修建的條直道, 將廣場分割為個區(qū)域:Ⅰ、Ⅲ、Ⅴ為綠化區(qū)域(圖中陰影部分),Ⅱ、Ⅳ、Ⅵ為休閑區(qū)域,其中點在半圓弧上, 分別與 相交于點, .(道路寬度忽略不計)

(1)若經(jīng)過圓心,求點的距離;

(2)設(shè) .

①試用表示的長度;

②當(dāng)為何值時,綠化區(qū)域面積之和最大.

查看答案和解析>>

同步練習(xí)冊答案