【題目】設(shè)圓的圓心為,直線l過點且與x軸不重合,l交圓于兩點,過點作的平行線交于點.
(1)證明為定值,并寫出點的軌跡方程;
(2)設(shè)點的軌跡為曲線,直線與曲線交于兩點,點為橢圓上一點,若是以為底邊的等腰三角形,求面積的最小值.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在的二項展開式中,所有項的二項式系數(shù)之和為.
(1)求展開式的常數(shù)項:
(2)求展開式中所有奇數(shù)項的系數(shù)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面平面,,,,,,分別為的中點.
(Ⅰ)證明:平面∥平面;
(Ⅱ)若,
(1)求平面與平面所成銳二面角的余弦值;
(2)求點到平面的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一半徑為的水輪,水輪圓心距離水面2,已知水輪每分鐘轉(zhuǎn)動(按逆時針方向)3圈,當(dāng)水輪上點從水中浮現(xiàn)時開始計時,即從圖中點開始計算時間.
(1)當(dāng)秒時點離水面的高度_________;
(2)將點距離水面的高度(單位: )表示為時間(單位: )的函數(shù),則此函數(shù)表達式為_______________ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,平面,,點、分別在線段、上,且,其中,連接,延長與的延長線交于點,連接.
(Ⅰ)求證:平面;
(Ⅱ)若時,求二面角的正弦值;
(Ⅲ)若直線與平面所成角的正弦值為時,求值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在下列四個幾何體中,它們的三視圖(主視圖、左視圖、俯視圖)中有且僅有兩個相同,而另一個不同的幾何體是( )
(1)棱長為1的正方體
(2)底面直徑和高均為1的圓柱
(3)底面直徑和高均為1的圓錐
(4)底面邊長為1、高為2的正四棱柱
A.(2)(3)(4)B.(1)(2)(3)
C.(1)(3)(4)D.(1)(2)(4)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】我國古代數(shù)學(xué)名著《算法統(tǒng)宗》中有如下問題:“遠望巍巍塔七層,紅光點點倍加增,共燈三百八十一,請問尖頭幾盞燈?”意思是:一座7層塔共掛了381盞燈,且相鄰兩層中的下一層燈數(shù)是上一層燈數(shù)的2倍,則塔的頂層共有燈( )
A. 1盞 B. 3盞 C. 5盞 D. 9盞
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(為自然對數(shù)的底數(shù)).
(1)若對于任意實數(shù),恒成立,試確定的取值范圍;
(2)當(dāng)時,函數(shù)在上是否存在極值?若存在,請求出這個極值;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某單位共有職工1000人,其中男性700人,女性300人,為調(diào)查該單位職工每周平均體育運動時間的情況,采用分層抽樣的方法,收集200位職工每周平均體育運動時間的樣本數(shù)據(jù)(單位:小時).
(1)根據(jù)這200個樣本數(shù)據(jù),得到職工每周平均體育運動時間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)的分組區(qū)間為:,,,,,.估計該單位職工每周平均體育運動時間超過4小時的概率;
(2)估計該單位職工每周平均體育運動時間的平均數(shù)和中位數(shù)(保留兩位小數(shù));
(3)在樣本數(shù)據(jù)中,有40位女職工的每周平均體育運動時間超過4小時,請完成每周平均體育運動時間與性別列聯(lián)表,并判斷是否有90%的把握認(rèn)為“該單位職工的每周平均體育運動時間與性別有關(guān)”,
0.10 | 0.05 | 0.010 | 0.005 | |
2.706 | 3.841 | 6.635 | 7.879 |
附:.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com