1.設f(x)是R上的奇函數(shù),且當x∈[0,+∞)時,f(x)=x(x+$\root{3}{x}$).求:
(1)f(-8);
(2)f(x)在R上的解析式.

分析 (1)根據(jù)解析式先求出f(8),由奇函數(shù)的性質(zhì)求出f(-8);
(2)設x<0則-x>0,代入解析式化簡得f(-x),由奇函數(shù)的性質(zhì)求出f(x),利用分段函數(shù)表示出
f(x).

解答 解:(1)∵當x∈[0,+∞)時,f(x)=x(x+$\root{3}{x}$),
∴f(8)=8×(8+$\root{3}{8}$)=80,
∵f(x)是R上的奇函數(shù),
∴f(-8)=-f(8)=-80;
(2)設x<0,則-x>0,
∵當x∈[0,+∞)時,f(x)=x(x+$\root{3}{x}$),
∴f(-x)=-x(-x-$\root{3}{x}$)=x(x+$\root{3}{x}$),
∵f(x)是R上的奇函數(shù),
∴f(x)=-f(-x)=-x(x+$\root{3}{x}$),
綜上得,$f(x)=\left\{\begin{array}{l}{x(x+\root{3}{x}),x≥0}\\{-x(x+\root{3}{x}),x<0}\end{array}\right.$.

點評 本題考查了利用函數(shù)奇偶性的性質(zhì)求函數(shù)值和解析式,考查轉(zhuǎn)化思想,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

11.函數(shù)$y=sin(x-\frac{π}{4})cos(x+\frac{π}{4})+\frac{1}{2}$是(  )
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.函數(shù)f(x)=x|sinx+a|+b(a,b∈R)是奇函數(shù)的充要條件是( 。
A.ab=0B.a+b=0C.a=bD.a2+b2=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

9.已知{an}為等差數(shù)列,且a1+a3=8,a2+a4=12,記{an}的前n項和為Sn,若a1,ak,Sk+2成等比數(shù)列,則正整數(shù)
k的值為6.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.劉先生購買了一部手機,欲使用中國移動的“智慧”卡或加入中國聯(lián)通網(wǎng),經(jīng)調(diào)查收費標準如表:
網(wǎng)絡月租本地話費長途話費
甲:聯(lián)通12元0.3元/分鐘0.6元/分鐘
乙:移動0.5元/分鐘0.8元/分鐘
劉先生每月接打本地電話時間是長途電話的5倍(手機雙向收費,接打話費相同).
(1)設劉先生每月通話時間為x分鐘,求使用甲種入網(wǎng)方式所需話費的函數(shù)f(x)及使用乙種入網(wǎng)方式所需話費的函數(shù)g(x);
(2)請你根據(jù)劉先生每月通話時間為劉先生選擇較為省錢的入網(wǎng)方式.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知集合P={x|-$\frac{1}{3}$≤x≤3},Q={x|-2<x≤$\frac{1}{3}$}.則集合P∪Q=( 。
A.[-2,3)B.(-2,3]C.$[{-\frac{1}{3},3})$D.$[{-\frac{1}{3},\frac{1}{3}}]$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.不等式2${\;}^{{x}^{2}-x}$<4的解集為( 。
A.(1,2)B.(-2,-1)C.(-1,2)D.(-∞,-1)∪(2,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)f(x)為奇函數(shù),且圖象關于x=1對稱,當x∈(0,1)時,f(x)=ln(x+1),則當x∈(3,4)時,f(x)為( 。
A.增函數(shù)且f(x)>0B.增函數(shù)且f(x)<0C.減函數(shù)且f(x)>0D.減函數(shù)且f(x)<0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

11.某商店將進價為40元的商品按50元一件銷售,一個月恰好賣500件,而價格每提高1元,就會少賣10個,商店為使該商品利潤最大,應將每件商品定價為(  )
A.50元B.60元C.70元D.100元

查看答案和解析>>

同步練習冊答案