個(gè)正數(shù)排成列:


 
 

其中每一行的數(shù)由左至右成等差數(shù)列,每一列的數(shù)由上至下成等比數(shù)列,并且所有公比相等,已知,,,則=           。

解析試題分析:設(shè)a11=a,第一行數(shù)的公差為d,第一列數(shù)的公比為q,可得ast=[a+(t-1)d]qs-1,又設(shè)第一行數(shù)列公差為d,各列數(shù)列的公比為q,則第四行數(shù)列公差是dq3,于是可得,
解此方程組,得a11=d=q=±,由于給n2個(gè)數(shù)都是正數(shù),必有q>0,從而有a11=d=q=,
于是對(duì)任意的1≤k≤n,有akk=a1kqk-1=[a11+(k-1)d]qk-1=,
得S=++……+,
S=
兩式相減后得:S=++……+,
所以S=。
考點(diǎn):本題主要考查等差數(shù)列、等比數(shù)列的基礎(chǔ)知識(shí),“錯(cuò)位相減法”。
點(diǎn)評(píng):難題,通過(guò)觀察數(shù)列的特征,布列方程組,先求出數(shù)列的通項(xiàng),從而根據(jù)數(shù)列通項(xiàng)的特點(diǎn)選擇合適的求和方法。“分組求和法”“裂項(xiàng)相消法”也常?嫉降那蠛头椒ā

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

對(duì)于實(shí)數(shù),用表示不超過(guò)的最大整數(shù),如,,若為正整數(shù),,為數(shù)列的前項(xiàng)和,則__________________________;

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知數(shù)列{an}中, 對(duì)任意正整數(shù)n都成立,且,則      

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

數(shù)列中, ,那么此數(shù)列的前10項(xiàng)和=      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

如圖,它滿足:

(1)第行首尾兩數(shù)均為;
(2)表中的遞推關(guān)系類似楊輝三角,則第個(gè)數(shù)是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

下圖的數(shù)表滿足:①第n行首尾兩數(shù)均為n;②表中的遞推關(guān)系類似楊輝三角。則第n行第2個(gè)數(shù)是_________.
1
2    2
3     4     3
4     7     7      4
5    11   14     11     5
6    16    25    25     16    6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

已知數(shù)列的首項(xiàng)為,且,則這個(gè)數(shù)列的通項(xiàng)公式為___________

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

已知數(shù)列的前項(xiàng)和,數(shù)列滿足
(1)求數(shù)列的通項(xiàng)公式,并說(shuō)明是否為等比數(shù)列;
(2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

在數(shù)列中,,且對(duì)于任意正整數(shù)n,都有,則=______

查看答案和解析>>

同步練習(xí)冊(cè)答案