(本題滿分14分)張先生家住H小區(qū),他在C科技園區(qū)工作,從家開車到公司上班有L1,L2兩條路線(如圖),L1路線上有A1,A2,A3三個路口,各路口遇到紅燈的概率均為;L2路線上有B1,B2兩個路口,各路口遇到紅燈的概率依次為,

(1)若走L1路線,求最多遇到1次紅燈的概率;
(2)若走L2路線,求遇到紅燈次數(shù)的數(shù)學(xué)期望;
(3)按照“平均遇到紅燈次數(shù)最少”的要求,請你幫助張先生從上述兩條路線中選擇一條最好的上班路線,并說明理由.
(Ⅰ)最多遇到1次紅燈的概率為
(Ⅱ)
隨機變量的分布列為:

0
1
2
P



.(Ⅲ)選擇L2路線上班最好. 
(Ⅰ)設(shè)走L1路線最多遇到1次紅燈為A事件,則

(II) 依題意,的可能取值為0,1,2.然后分別求出X對應(yīng)的每個值的概率,列出分布列,根據(jù)期望公式求值即可.
(III)設(shè)選擇L1路線遇到紅燈次數(shù)為,隨機變量服從二項分布,,
,通過與比較,誰的值大,就選擇L路線上班最好.
解:(Ⅰ)設(shè)走L1路線最多遇到1次紅燈為A事件,則
所以走L1路線,最多遇到1次紅燈的概率為.………4分
(Ⅱ)依題意,的可能取值為0,1,2.             ………………5分
,  
,
.       ………………7分
隨機變量的分布列為:

0
1
2
P



.            ………………9分
(Ⅲ)設(shè)選擇L1路線遇到紅燈次數(shù)為,隨機變量服從二項分布,,…11分
所以.         ………………12分
因為,所以選擇L2路線上班最好.      ………………13分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知一袋有2個白球和4個黑球。
(1)采用不放回地從袋中摸球(每次摸一球),4次摸球,求恰好摸到2個黑球的概率;
(2)采用有放回從袋中摸球(每次摸一球),4次摸球,令X表示摸到黑球次數(shù),
求X的分布列和期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

口袋中有5只球,編號為1,2,3,4,5,從中任取3球,以表示取出的球的最大號碼,則(     )
A. 4B. 5C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某校為了解高一年級學(xué)生身高情況,按10%的比例對全校700名高一學(xué)生按性別進(jìn)行抽樣檢查,測得身高頻數(shù)分布表如下:
表1:男生身高頻數(shù)分布表
身高(cm)
[160,165)
[165,170)
[170,175)
[175,180)
[180,185)
[185,190)
頻數(shù)
2
5
13
13
5
2
表2:女生身高頻數(shù)分布表
身高(cm)
[150,155)
[155,160)
[160,165)
[165,170)
[170,175)
[175,180)
頻數(shù)
1
8
12
5
3
1
(Ⅰ)求該校高一男生的人數(shù);
(Ⅱ)估計該校高一學(xué)生身高(單位:cm)在[165,180)的概率;
(Ⅲ)在男生樣本中,從身高(單位:cm)在[180,190)的男生中任選3人,設(shè)ξ表示所選3人中身高(單位:cm)在[180,185)的人數(shù),求ξ的分布列和數(shù)學(xué)期望.
ξ
1
2
3




查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分13分)
一個袋子中裝有大小形狀完全相同的編號分別為1,2,3,4,5的5個紅球與編號為1,2,3,4的4個白球,從中任意取出3個球.
(Ⅰ)求取出的3個球顏色相同且編號是三個連續(xù)整數(shù)的概率;
(Ⅱ)求取出的3個球中恰有2個球編號相同的概率;
(Ⅲ)記X為取出的3個球中編號的最大值,求X的分布列與數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某班級共派出個男生和個女生參加學(xué)校運動會的入場儀式,其中男生甲為領(lǐng)隊.入場時,領(lǐng)隊男生甲必須排第一個,然后女生整體在男生的前面,排成一路縱隊入場,共有種排法;入場后,又需從男生(含男生甲)和女生中各選一名代表到主席臺服務(wù),共有種選法.
(1)試求; 
(2)判斷的大。),并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題共12分)
甲,乙兩人進(jìn)行乒乓球比賽,約定每局勝者得分,負(fù)者得分,比賽進(jìn)行到有一人比對方多分或打滿局時停止.設(shè)甲在每局中獲勝的概率為,且各局勝負(fù)相互獨立.已知第二局比賽結(jié)束時比賽停止的概率為
(Ⅰ)求的值;
(Ⅱ)設(shè)表示比賽停止時比賽的局?jǐn)?shù),求隨機變量的分布列和數(shù)學(xué)期望

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

有一個3×4×5的長方體, 它的六個面上均涂上顏色. 現(xiàn)將這個長方體鋸成60個1×1×1的小正方體,從這些小正方體中隨機地任取1個,設(shè)小正方體涂上顏色的面數(shù)為.
(1)求的概率;
(2)求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

一個袋中有大小、質(zhì)地相同的標(biāo)號為的三個小球.某人做如下游戲:每次從袋中摸一個小球,記下標(biāo)號然后放回,共摸球次.若拿出球的標(biāo)號是奇數(shù),則得分,否則得分,則次所得分?jǐn)?shù)之和的數(shù)學(xué)期望是         

查看答案和解析>>

同步練習(xí)冊答案