答案:
解析:
|
解:(1)由知,由直AB經(jīng)過原點,
又由,因為橢圓的離心率等于,
所以,故橢圓方程 2分
設(shè)A(x,y),由,知x=c,
∴A(c,y),代入橢圓方程得, 4分
故直線AB的斜率
因此直線AB的方程為 6分
(2)連結(jié)AF1、BF1、AF2、BF2,由橢圓的對稱性可知
, 8分
所以,又由,解得,
故橢圓的方程為
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1,F(xiàn)
2是橢圓
+=1(a>b>0)的兩個焦點,若在橢圓上存在一點P,使∠F
1PF
2=120°,則橢圓離心率的范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1、F
2是橢圓
+=1(a>b>0)的兩個焦點,若橢圓上存在點P使得∠F
1PF
2=120°,求橢圓離心率的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1、F
2是橢圓的兩個焦點.△F
1AB為等邊三角形,A,B是橢圓上兩點且AB過F
2,則橢圓離心率是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知 F
1、F
2是橢圓
+
=1(a>b>0)的兩個焦點,橢圓上存在一點P,使得
S△F1PF2=b2,則該橢圓的離心率的取值范圍是
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知F
1,F(xiàn)
2是橢圓
+y2=1的兩個焦點,點P是橢圓上一個動點,那么
|+|的最小值是( )
查看答案和解析>>