A. | $\frac{π}{4}$ | B. | $\frac{π}{2}$ | C. | $\frac{3π}{4}$ | D. | π |
分析 根據(jù)二項式展開式的通項公式Tr+1求出展開式中x4項的系數(shù)a,再利用定積分的幾何意義求出${∫}_{0}^{1}$$\sqrt{1{-x}^{2}}$dx的值.
解答 解:二項式(x2-$\frac{1}{x}$)5的展開式中,
通項公式為Tr+1=${C}_{5}^{r}$•x2(5-r)•${(-\frac{1}{x})}^{r}$=(-1)r•${C}_{5}^{r}$•x10-3r,
10-3r=4,r=2,
則x4項的系數(shù)是a=${C}_{5}^{2}$•(-1)2=10,
則${∫}_{0}^{\frac{a}{10}}$$\sqrt{1-{x}^{2}}$dx=${∫}_{0}^{1}$$\sqrt{1{-x}^{2}}$dx
它表示的幾何意義是由曲線y=$\sqrt{1{-x}^{2}}$,直線x=0,x=1所圍成封閉圖形的面積,
故${∫}_{0}^{1}$$\sqrt{1{-x}^{2}}$dx=$\frac{π}{4}$.
故選:A.
點評 本題考查了二項式展開式的通項公式以及定積分幾何意義的應用問題,是基礎題目.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 5$\sqrt{2}$ | B. | 2$\sqrt{5}$ | C. | 3$\sqrt{10}$ | D. | $\sqrt{10}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{4}$) | B. | (-$\frac{1}{2}$,-$\frac{\sqrt{3}}{4}$] | C. | [0,$\frac{\sqrt{3}}{4}$] | D. | (-$\frac{2}{3}$,-$\frac{1}{2}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | {3,6} | B. | {2,5} | C. | {2,5,6} | D. | {2,3,5,6,8} |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com