3.已知集合A={x|x2-x-2<0},B={y|y=ex,x<ln3},則A∪B=( 。
A.(-1,3)B.(-1,0)C.(0,2)D.(2,3)

分析 先分別求出集合A和B,由此利用并集定義能求出A∪B.

解答 解:∵集合A={x|x2-x-2<0}={x|-1<x<2},
B={y|y=ex,x<ln3}={y|0<y<3},
∴A∪B={x|-1<x<3}=(-1,3).
故選:A.

點(diǎn)評 本題考查并集的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意并集定義的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)f′(x)、g′(x)分別是函數(shù)f(x)、g(x)(x∈R)的導(dǎo)數(shù),且滿足g(x)>0,f′(x)g(x)-f(x)g′(x)>0.若△ABC中,∠C是鈍角,則(  )
A.f(sinA)•g(sinB)>f(sinB)•g(sinA)B.f(sinA)•g(sinB)<f(sinB)•g(sinA)
C.f(cosA)•g(sinB)>f(sinB)•g(cosA)D.f(cosA)•g(sinB)<f(sinB)•g(cosA)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸,建立極坐標(biāo)系.曲線C1的極坐標(biāo)方程為ρ2(3+sin2θ)=12,曲線C2的參數(shù)方程為$\left\{\begin{array}{l}x=1+tcosα\\ y=tsinα\end{array}\right.$(t為參數(shù),$α∈(0,\frac{π}{2})$).
(1)求曲線C1的直角坐標(biāo)方程,并判斷該曲線是什么曲線;
(2)設(shè)曲線C2與曲線C1的交點(diǎn)為A,B,P(1,0),當(dāng)$|PA|+|PB|=\frac{7}{2}$時,求cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知圓C:(x-1)2+y2=r2(r>0).設(shè)條件p:0<r<3,條件q:圓C上至多有2個點(diǎn)到直線x-$\sqrt{3}$y+3=0的距離為1,則p是q的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.如圖,已知△ABC中,角A,B,C的對邊分別為a,b,c,C=120°.
(Ⅰ)若c=1,求△ABC面積的最大值;
(Ⅱ)若a=2b,求tanA.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.下列命題,其中說法錯誤的是( 。
A.雙曲線$\frac{{x}^{2}}{2}$-$\frac{{y}^{2}}{3}$=1的焦點(diǎn)到其漸近線距離為$\sqrt{3}$
B.若命題p:?x∈R,使得sinx+cosx≥2,則¬p:?x∈R,都有sinx+cosx<2
C.若p∧q是假命題,則p、q都是假命題
D.設(shè)a,b是互不垂直的兩條異面直線,則存在唯一平面α,使得a?α,且b∥α

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.現(xiàn)有4名同學(xué)去參加校學(xué)生會活動,共有甲、乙兩類活動可供參加者選擇,為增加趣味性,約定:每個人通過擲一枚質(zhì)地均勻的骰子決定自己去參加哪類活動,擲出點(diǎn)數(shù)為1或2的人去參加甲類活動,擲出點(diǎn)數(shù)大于2的人去參加乙類活動.
(1)求這4個人中恰有2人去參加甲類活動的概率;
(2)用X,Y分別表示這4個人中去參加甲、乙兩類活動的人數(shù).記ξ=|X-Y|,求隨機(jī)變量ξ的分布列與數(shù)學(xué)期望E(ξ).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2017屆湖南衡陽縣四中高三9月月考數(shù)學(xué)(文)試卷(解析版) 題型:解答題

已知函數(shù)

(1)求的最小正周期;

(2)若將的圖象向右平移個單位,得到函數(shù)的圖象,求函數(shù)在區(qū)間上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖所示,在三棱柱ABC-A1B1C1中,AB=AC,四邊形BCC1B1為矩形.
(1)求證△A1BC為等腰三角形;
(2)若$∠{A_1}BC=\frac{π}{3}$,AB⊥AC,平面A1BC⊥平面ABC,求二面角B-A1C-C1的余弦值.

查看答案和解析>>

同步練習(xí)冊答案