13.已知數(shù)列{an}的前n項和為Sn,且Sn=2an+1,則數(shù)列{an}的通項公式為( 。
A.${a_n}=-{2^{n-1}}$B.${a_n}={2^{n-1}}$C.an=2n-3D.${a_n}={2^{n-1}}-2$

分析 由Sn=2an+1,可得n≥2時,an=Sn-Sn-1,化為:an=2an-1.n=1時,a1=2a1+1,解得a1

解答 解:∵Sn=2an+1,∴n≥2時,an=Sn-Sn-1=2an+1-(2an-1+1),化為:an=2an-1
n=1時,a1=2a1+1,解得a1=-1.
∴數(shù)列{an}為等比數(shù)列,公比為2.
∴an=-2n-1
故選:A.

點評 本題考查了等比數(shù)列的通項公式、遞推關系,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

6.某駕駛員喝了m升酒后,血液中的酒精含量f(x)(毫克I毫升)隨時間x(小時)變化的規(guī)律近似滿足表達式f(x)=$\left\{\begin{array}{l}{{5}^{x-2},0≤x≤1}\\{\frac{3}{5}•(\frac{1}{3})^{x},x>1}\end{array}\right.$,《酒后駕車與醉酒駕車的標準及相應的處罰》規(guī)定:駕駛員血液中酒精含量不得超過0.02毫克I毫升.此駕駛員至少要經(jīng)過( 。┬r后才能開車.(不足1小時算1小時,結果精確到1小時)
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.函數(shù)f(x)=ln(x-3)的定義域為( 。
A.{x|x>-3}B.{x|x>0}C.{x|x>3}D.{x|x≥3}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.設等比數(shù)列{an}的公比q=2,前n項和為Sn,則$\frac{{S}_{4}}{{a}_{1}}$=15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.在△ABC中,a,b,c分別為角A,B,C所對的邊,若bcosC+ccosB=asinA,則△ABC的形狀為( 。
A.銳角三角形B.直角三角形C.鈍角三角形D.等腰三角形

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知拋物線C:y2=4x,F(xiàn)是拋物線C的焦點,過F點的直線l與拋物線C相交于A、B兩點,記O為坐標原點.
(Ⅰ)求$\overrightarrow{OA}•\overrightarrow{OB}$的值;
(Ⅱ)設$\overrightarrow{AF}=λ\overrightarrow{FB}$,當△OAB的面積${S_{△OAB}}=\frac{5}{2}$時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.已知x,y滿足不等式組$\left\{{\begin{array}{l}{y≤x}\\{x+y≥2}\\{x≤2}\end{array}}\right.$,則z=2x+y的最大值與最小值之和為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知p:直線y=(2m+1)x+m-2的圖象不經(jīng)過第二象限,q:方程x2+$\frac{{y}^{2}}{1-m}$=1表示焦點在x軸上的橢圓,若(¬p)∨q為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.已知函數(shù)y=f(x)在定義域內是可導函數(shù),則y=f(x)在x=x0處取得極值是函數(shù)y=f(x)在該處的導數(shù)值為0的( 。l件.
A.充要B.必要不充分
C.充分不必要D.既不充分又不必要

查看答案和解析>>

同步練習冊答案