【題目】在四棱錐底面為菱形,側面為等邊三角形且側面底面,分別為、的中點

1求證:

2求證:平面平面

【答案】1詳見解析2詳見解析

【解析】

試題分析:1立體中證明線線垂直,一般利用線面垂直性質定理,即先轉化為證明線面垂直,而線面垂直的證明,往往從兩個方面進行,一是結合平幾知識尋找線線垂直,如利用等邊三角形性質得中線垂直底邊,另一方面,結合立幾中面面垂直條件,將其轉化為線面垂直,再得線線垂直2證明面面垂直,實質為證明線面垂直,而線面垂直的證明,往往從兩個方面進行,一是結合平幾知識尋找線線垂直,如利用等邊三角形性質得中線垂直底邊,另一方面,結合立幾中線面垂直條件得線線垂直

試題解析:證明:1因為為等邊三角形,的中點,

所以

又因為平面,平面,平面

所以平面,

又因為平面

所以

2連接,因為四邊形為菱形,

所以

因為,分別為的中點

所以,所以

1可知,平面

因為平面,所以

因為所以平面

又因為平面,

所以平面平面

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】一個等腰三角形繞著底邊上的高所在的直線旋轉180度所形成的幾何體的名稱是( )

A. 圓柱 B. 圓錐 C. 圓臺 D. 圓柱的一部分

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知直線l的方程是y=2x+3,則l關于y=-x對稱的直線方程是(  )

A. x-2y+3=0 B. x-2y=0

C. x-2y-3=0 D. 2x-y=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列不具有相關關系的是(  )

A. 單產不為常數(shù)時,土地面積和總產量

B. 人的身高與體重

C. 季節(jié)與學生的學習成績

D. 學生的學習態(tài)度與學習成績

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,直三棱柱ABCA1B1C1中,D、E分別是ABBB1的中點.

)證明:BC1平面A1CD;

AA1ACCB2AB,求三棱錐CA1DE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設集合A={1,2,4},B={x|x2-4xm=0}.若AB={1},則B=(  )

A. {1,-3} B. {1,0}

C. {1,3} D. {1,5}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某兒童樂園在“六一”兒童節(jié)出了一項趣味活動,參加活動的兒童需轉動如圖所示的轉盤兩次,每次轉動后,待轉盤停止轉動時,記錄指針所指區(qū)域中的數(shù)設兩次記錄的數(shù)分別為x,y.

獎勵規(guī)則如下:

,則獎勵玩具一個;

,則獎勵水杯一個;

其余情況獎勵飲料一瓶.

假設轉盤質地均勻,四個區(qū)域劃分均勻.小亮準備參加此項活動.

I)求小亮獲得玩具的概率;

II)請比較小亮獲得水杯與獲得飲料的概率的大小,并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】口袋內裝有大小相同的紅球、白球和黑球,從中摸出一個球,摸出紅球的概率是0.42,摸出白球的概率是0.28,則摸出黑球的概率是( )

A. 0.42 B. 0.28 C. 0.7 D. 0.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】醫(yī)用放射性物質原來質量a,每年衰減的百分比相同,衰減一半時,所用時間是10年,根據(jù)需要,放射性物質至少要保留原來的,否則需要更換.已知到今年為止,剩余為原來的

(1)求每年衰減的百分比;

(2)到今年為止,該放射性物質衰減了多少年?

(3)今后至多還能用多少年?

查看答案和解析>>

同步練習冊答案