4.設(shè)函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤1\\ lgx,x>1\end{array}\right.$,則f(f(10))的值為(  )
A.lg101B.1C.2D.0

分析 先求出f(10)=lg10=1,從而f(f(10))=f(1),由此能求出結(jié)果.

解答 解:∵函數(shù)$f(x)=\left\{\begin{array}{l}{x^2}+1,x≤1\\ lgx,x>1\end{array}\right.$,
∴f(10)=lg10=1,
f(f(10))=f(1)=1+1=2.
故選:C.

點(diǎn)評(píng) 本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知全集U=R,A={x|-2<x<0},B={x|-1<x<3},求:
(1)A∪B
(2)A∩B
(3)(∁UA)∩(∁UB)
(4)(∁UA)∪(∁UB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.設(shè)f(x)=$\left\{\begin{array}{l}{x-2,(x≥10)}\\{f(x+6),(1≤x<10)}\end{array}\right.$則使f(x)=11成立的實(shí)數(shù)x的集合為{1,7,13}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知函數(shù)f(x)=lg(-x2+4x+5),則該函數(shù)的單調(diào)遞減區(qū)間為[2,5);該函數(shù)在定義域內(nèi)的最大值為lg9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.某學(xué)校有學(xué)生4 022人.為調(diào)查學(xué)生對(duì)2012年倫敦奧運(yùn)會(huì)的了解狀況,現(xiàn)用系統(tǒng)抽樣的方法抽取一個(gè)容量為30的樣本,則分段間隔是134.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.函數(shù)$f(x)=\frac{{\sqrt{2x-1}}}{{{x^2}-1}}$的定義域?yàn)椋ā 。?table class="qanwser">A.$[\frac{1}{2}\;\;,\;\;+∞)$B.(1,+∞)C.$[\frac{1}{2}\;\;,\;\;1)∪({1\;\;,\;\;+∞})$D.$(-1\;\;,\;\;\frac{1}{2}]∪({1\;\;,\;\;+∞})$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.空間中四點(diǎn)可確定的平面有( 。
A.1個(gè)B.4個(gè)C.1個(gè)或4個(gè)D.0個(gè)或1個(gè)或4個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.定義$\frac{n}{{{p_1}+{p_2}+{p_3}+…+{p_n}}}$為n個(gè)實(shí)數(shù)P1.P2.….Pn的“均倒數(shù)”.已知數(shù)列{an}的前n項(xiàng)的“均倒數(shù)”為$\frac{1}{2n+a}$,前n項(xiàng)和Sn≥S5恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-18,-16)B.[-18,-16]C.(-22,-18)D.(-20,-18)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.各項(xiàng)均為正數(shù)的等比數(shù)列{an}滿足a2=3,a4-2a3=9,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=(n+1)•log3an+1,數(shù)列$\left\{{\frac{1}{b_n}}\right\}$前n項(xiàng)和$T_n^{\;}$,在(1)的條件下,證明不等式Tn<1.

查看答案和解析>>

同步練習(xí)冊(cè)答案