若a,b∈R+,且a+b=1,則數(shù)學(xué)公式的最大值是________.


分析:將轉(zhuǎn)化成()(a+b),然后化簡整理利用基本不等式可求出的最值,從而求出所求.
解答:∵a,b∈R+,且a+b=1
=()(a+b)=+2++2=
當(dāng)且僅當(dāng)a=,b=時(shí)取等號

的最大值是
故答案為:
點(diǎn)評:本題主要考查基本不等式,著重考查整體代換的思想,易錯(cuò)點(diǎn)在于應(yīng)用基本不等式時(shí)需注意“一正二定三等”三個(gè)條件缺一不可,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若a,b∈R+,且a+b=2,則
1
a
+
1
b
的最小值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x+x3,x∈R.
(1)判斷函數(shù)f(x)的單調(diào)性,并證明你的結(jié)論;
(2)若a,b∈R,且a+b>0,試比較f(a)+f(b)與0的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于使-x2+2x≤M成立的所有常數(shù)M中,我們把M的最小值l做-x2+2x的上確界,若a,b∈R,且a+b=1,則-
1
2a
-
2
b
的上確界為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a,b∈R+,且a≠b,M=
a
b
+
b
a
,N=
a
+
b
,則M與N的大小關(guān)系是( 。

查看答案和解析>>

同步練習(xí)冊答案