下表是某廠月份用水量(單位:百噸)的一組數(shù)據(jù):
月份




用水量




由散點圖可知,用水量與月份之間有較好的線性相關(guān)關(guān)系,其線性回歸直線方程是,則據(jù)此模型預(yù)測6月份用水量為________百噸
1.05
解:因為可以由題意得到x,y的均值分別為2.5,3.5,那么可知∴a="." y +0.7. x =3.5+0.7×2.5=3.5+1.75=5.25,將x=6,代入方程中得到據(jù)此模型預(yù)測6月份用水量為1.05百噸
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

給出下列命題:
①線性回歸方程 必過
②函數(shù)的零點有2個;
③函數(shù)的圖象與軸圍成的圖形面積是;
④函數(shù)是偶函數(shù),且在區(qū)間內(nèi)單調(diào)遞增;
⑤函數(shù)的最小正周期為.其中真命題的序號是           

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知具有線性相關(guān)的兩個變量之間的一組數(shù)據(jù)如下:

0
1
2
3
4

2.2
4.3
4.5
4.8
6.7
且回歸方程是,其中.則當(dāng)時,的預(yù)測值為(   )
A.8.1          B.8.2       C.8.3           D.8.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知某校5個學(xué)生的數(shù)學(xué)和物理成績?nèi)缦卤?br />
(1)假設(shè)在對這名學(xué)生成績進(jìn)行統(tǒng)計時,把這名學(xué)生的物理成績搞亂了,數(shù)學(xué)成績沒出現(xiàn)問題,問:恰有名學(xué)生的物理成績是自己的實際分?jǐn)?shù)的概率是多少?
(2)通過大量事實證明發(fā)現(xiàn),一個學(xué)生的數(shù)學(xué)成績和物理成績具有很強的線性相關(guān)關(guān)系的,在上述表格是正確的前提下,用表示數(shù)學(xué)成績,用表示物理成績,求的回歸方程;
(3)利用殘差分析回歸方程的擬合效果,若殘差和在范圍內(nèi),則稱回歸方程為“優(yōu)擬方程”,問:該回歸方程是否為“優(yōu)擬方程”.
參考數(shù)據(jù)和公式:,其中,;
,殘差和公式為:

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

下列關(guān)系中,具有相關(guān)關(guān)系的是(   )
A.人的身高與體重;B.勻速行駛的車輛所行駛距離與行駛的時間;
C.人的身高與視力;D.正方體的體積與邊長.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

某工廠為了對新研發(fā)的一種產(chǎn)品進(jìn)行合理定價,將該產(chǎn)品按事先擬定的價格進(jìn)行試銷,得到如下數(shù)據(jù):
單價x(元)
8
8.2
8.4
8.6
8.8
9
銷量y(件)
90
84
83
80
75
68
(I)求回歸直線方程=bx+a,其中b=-20,a=-b;
(II)預(yù)計在今后的銷售中,銷量與單價仍然服從(I)中的關(guān)系,且該產(chǎn)品的成本是4元/件,為使工廠獲得最大利潤,該產(chǎn)品的單價應(yīng)定為多少元?(利潤=銷售收入-成本)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

甲、乙兩同學(xué)各自獨立地考察兩個變量的線性相關(guān)關(guān)系時,發(fā)現(xiàn)兩人對 的觀察數(shù)據(jù)的平均值相等,都是,對的觀察數(shù)據(jù)的平均值也相等,都是,各自求出的回歸直線分別是,則直線與必過同一點____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知有線性相關(guān)關(guān)系的兩個變量建立的回歸直線方程為,方程中的回歸系數(shù) (    )
A.可以小于0 B.只能大于0C.可以為0D.只能小于0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

下表是某廠1-4月份用水量(單位:100t)的一組數(shù)據(jù), 由其散點圖可知, 用水量y與月份x之間有較好的線性相關(guān)關(guān)系,其線性回歸方程是_________________.
月份x
1
2
3
4
用水量y(100t)
4.4
4
3
2.5

查看答案和解析>>

同步練習(xí)冊答案