已知集合A={x||x-1|<2},B={x|2<x≤5},則A∩B=
 
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:利用交集定義求解.
解答: 解:∵集合A={x||x-1|<2}={x|-1<x<3},B={x|2<x≤5},
∴A∩B={x|2<x<3}.
故答案為:{2<x<3}.
點(diǎn)評(píng):本題考查交集的運(yùn)算,是基礎(chǔ)題,解題時(shí)要注意絕對(duì)值不等式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知原命題為“若a>2,則a2>4”,寫出它的逆命題、否命題、逆否命題,并判斷四種命題的真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在Rt△ABC中,若∠C=90°,AC=b,BC=a,斜邊AB上的高為h,則有結(jié)論h2=
a2b2
a2+b2
,運(yùn)用類比方法,若三棱錐的三條側(cè)棱兩兩互相垂直且長(zhǎng)度分別為a,b,c,且三棱錐的直角頂點(diǎn)到底面的高為h,則有結(jié)論:
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若關(guān)于x的不等式x2+|x3-2x2|≥ax-4在x∈[1,10]內(nèi)恒成立,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從1,2,3,4,5,6六個(gè)數(shù)字中,選出一個(gè)偶數(shù)和兩個(gè)奇數(shù),組成一個(gè)沒有重復(fù)數(shù)字的三位數(shù),這樣的三位數(shù)共有
 
個(gè).(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等邊△ABC中,M,N分別為AB,AC上的點(diǎn),滿足AM=AN=2,沿MN將△AMN折起,使得平面AMN與平面MNCB所成的二面角為60°,則A點(diǎn)到平面MNCB的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)在給定區(qū)間M上存在的正數(shù)t,使得對(duì)任意的x∈M,有x+t∈M,且f(x+t)≥f(x),則稱f(x)為M上的t級(jí)類增函數(shù),給出下列命題:
①函數(shù)f(x)=3x是R上的1級(jí)類增函數(shù);
②若函數(shù)f(x)=R上單調(diào)遞增,則f(x)一定為R上的t級(jí)類增函數(shù);
③若函數(shù)f(x)=sinx+ax為[
π
2
,+∞]上的
π
3
級(jí)類增函數(shù),則實(shí)數(shù)a的最小值為2;
④若函數(shù)f(x)=x2-3x為[1,+∞)上的t級(jí)類增函數(shù),則實(shí)數(shù)t的取值范圍為[1,+∞).
其中正確的命題為
 
(寫出所有正確命題的序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

A
3
n
=
C
4
n
,則n=( 。
A、26B、27C、28D、29

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在梯形ABCD中,AB∥CD∥EF,若AB=5,CD=2,EF=4,則梯形ABFE與梯形EFDC的面積比是(  )
A、
2
3
B、
1
2
C、
9
2
D、
3
4

查看答案和解析>>

同步練習(xí)冊(cè)答案