(本小題滿分14分)

    已知數(shù)列{an},且x是函數(shù)f(x)=an-1x3-3[(t+1)anan+1] x+1(n≥2)的一個極值點.數(shù)列{an}中a1t,a2t2(t>0且t≠1) .

(1)求數(shù)列{an}的通項公式;

(2)記bn=2(1-),當t=2時,數(shù)列{bn}的前n項和為Sn,求使Sn>2010的n的最小值;

(3)若cn,證明:( n∈N).

解:(1)f ′(x)=3an-1x2-3[(t+1)anan+1],

所以f ′()=3an-1t-3[(t+1)anan+1]=0.

整理得:an+1ant(anan-1) .…………………………………………2分

t=1時,{anan-1}是常數(shù)列,得

t≠1時{anan-1}是以 a2a1t2t為首項, t為公比的等比數(shù)列,

所以 anan-1=(t2tt n-2=(t-1)·t n-1

方法一:由上式得

(anan-1)+(an-1an-2)+…+(a2a1)=(t-1)(tn-1tn-2+…+t),

ana1=(t-1)·tnt,

所以 antn(n≥2) .

          又,當t=1時上式仍然成立,故 antn(n∈N) .………………………4分

          方法二:由上式得: antnan-1tn-1,

所以{antn}是常數(shù)列,antna1t=0 antn(n≥2) .

又,當t=1時上式仍然成立,故 antn(n∈N) .

(2)當t=2, bn=2-

Sn=2n-(1++…+)=2n

=2n-2(1-)=2n-2+2·

Sn>2010,得

2n-2+2()n>2010, n+()n>1006,

n≤1005時, n+()n<1006,

n≥1006時, n+()n>1006,

因此 n的最小值為1006.………………………………………………8分

(3)cnc1,所以

因為

,

所以

              從而原命題得證.…………………………………………………………14分

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2011•廣東模擬)(本小題滿分14分 已知函數(shù)f(x)=
3
sin2x+2sin(
π
4
+x)cos(
π
4
+x)

(I)化簡f(x)的表達式,并求f(x)的最小正周期;
(II)當x∈[0,
π
2
]  時,求函數(shù)f(x)
的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(本小題滿分14分)設橢圓C1的方程為(ab>0),曲線C2的方程為y=,且曲線C1C2在第一象限內(nèi)只有一個公共點P。(1)試用a表示點P的坐標;(2)設A、B是橢圓C1的兩個焦點,當a變化時,求△ABP的面積函數(shù)S(a)的值域;(3)記min{y1,y2,……,yn}為y1,y2,……,yn中最小的一個。設g(a)是以橢圓C1的半焦距為邊長的正方形的面積,試求函數(shù)f(a)=min{g(a), S(a)}的表達式。

查看答案和解析>>

科目:高中數(shù)學 來源:2011年江西省撫州市教研室高二上學期期末數(shù)學理卷(A) 題型:解答題

(本小題滿分14分)
已知=2,點()在函數(shù)的圖像上,其中=.
(1)證明:數(shù)列}是等比數(shù)列;
(2)設,求及數(shù)列{}的通項公式;
(3)記,求數(shù)列{}的前n項和,并證明.

查看答案和解析>>

科目:高中數(shù)學 來源:2015屆山東省威海市高一上學期期末考試數(shù)學試卷(解析版) 題型:解答題

 (本小題滿分14分)

某網(wǎng)店對一應季商品過去20天的銷售價格及銷售量進行了監(jiān)測統(tǒng)計發(fā)現(xiàn),第天()的銷售價格(單位:元)為,第天的銷售量為,已知該商品成本為每件25元.

(Ⅰ)寫出銷售額關于第天的函數(shù)關系式;

(Ⅱ)求該商品第7天的利潤;

(Ⅲ)該商品第幾天的利潤最大?并求出最大利潤.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年廣東省高三下學期第一次月考文科數(shù)學試卷(解析版) 題型:解答題

(本小題滿分14分)已知的圖像在點處的切線與直線平行.

⑴ 求,滿足的關系式;

⑵ 若上恒成立,求的取值范圍;

⑶ 證明:

 

查看答案和解析>>

同步練習冊答案