精英家教網 > 高中數學 > 題目詳情

(本小題滿分13分)某蔬菜基地種植西紅柿,由歷年市場行情得知,從二月一日起的300天內,西紅柿市場售價與上市時間的關系用圖一的一條折線表示;西紅柿的種植成本與上市時間的關系用圖二的拋物線段表示.

(Ⅰ) 寫出圖一表示的市場售價與時間的函數關系式P =

 寫出圖二表示的種植成本與時間的函數關系式Q =

(Ⅱ) 認定市場售價減去種植成本為純收益,問何時上市的西紅柿收益最大?

(注:市場售價和種植成本的單位:元/kg,時間單位:天)

 

【答案】

解:(Ⅰ)由圖一可得市場售價與時間的函數關系為

f(t)=                                         ——2分

由圖二可得種植成本與時間的函數關系為

g(t)=(t-150)2+100,0≤t≤300.                                  ——4分

(Ⅱ)設t時刻的純收益為h(t),則由題意得

h(t)=f(t)-g(t)

h(t)=                           ——6分

當0≤t≤200時,配方整理得

h(t)=-(t-50)2+100,

所以,當t=50時,h(t)取得區(qū)間[0,200]上的最大值100;

當200<t≤300時,配方整理得

h(t)=-(t-350)2+100

所以,當t=300時,h(t)取得區(qū)間[200,300]上的最大值87.5.          ——10分

綜上,由100>87.5可知,h(t)在區(qū)間[0,300]上可以取得最大值100,此時t=50,即從二月一日開始的第50天時,上市的西紅柿純收益最大.                     ——13分

 

【解析】略

 

練習冊系列答案
相關習題

科目:高中數學 來源:2015屆江西省高一第二次月考數學試卷(解析版) 題型:解答題

(本小題滿分13分)已知函數.

(1)求函數的最小正周期和最大值;

(2)在給出的直角坐標系中,畫出函數在區(qū)間上的圖象.

(3)設0<x<,且方程有兩個不同的實數根,求實數m的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知定義域為的函數是奇函數.

(1)求的值;(2)判斷函數的單調性;

(3)若對任意的,不等式恒成立,求k的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:2011-2012學年福建省高三年級八月份月考試卷理科數學 題型:解答題

(本小題滿分13分)已知集合, ,.

(1)求(∁; (2)若,求的取值范圍.

 

查看答案和解析>>

科目:高中數學 來源:河南省09-10學年高二下學期期末數學試題(理科) 題型:解答題

 

(本小題滿分13分)如圖,正三棱柱的所有棱長都為2,的中點。

(Ⅰ)求證:∥平面;

(Ⅱ)求異面直線所成的角。www.7caiedu.cn           

 

 

 

 

 

 


[來源:KS5

 

 

 

 

U.COM

查看答案和解析>>

科目:高中數學 來源:2010-2011學年福建省高三5月月考調理科數學 題型:解答題

(本小題滿分13分)

已知為銳角,且,函數,數列{}的首項.

(1) 求函數的表達式;

(2)在中,若A=2,,BC=2,求的面積

(3) 求數列的前項和

 

 

查看答案和解析>>

同步練習冊答案