若向量
a
=(1,1),
b
=(1,-1),
c
=(-1,2),則
a
+2
b
-
c
=( 。
A、(4,-3)
B、(4,-2)
C、(1,2)
D、(2,-3)
考點(diǎn):平面向量的坐標(biāo)運(yùn)算
專題:平面向量及應(yīng)用
分析:根據(jù)向量的坐標(biāo)運(yùn)算法則進(jìn)行運(yùn)算即可.
解答: 解:∵向量
a
=(1,1),
b
=(1,-1),
c
=(-1,2),
a
+2
b
-
c
=(1+2×1-(-1),1+2×(-1)-2)=(4,-3).
故選:A.
點(diǎn)評:本題考查了向量的坐標(biāo)運(yùn)算問題,解題時應(yīng)按照向量的坐標(biāo)運(yùn)算法則進(jìn)行運(yùn)算,即可得出正確的答案,是容易題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合A={x|x2-3x-4≤0},B={x|0≤x≤4},則∁AB=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
log
1
2
x , x>0
f(x+3) , x≤0
,則f(f(4))=( 。
A、-2B、0C、1D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
a
0
xdx=2(a>0),則a的值為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

己知定義在R上的函數(shù)y=f(x)滿足f(x)=f(2-x),且當(dāng)x≠1時,其導(dǎo)函數(shù)f′(x)滿足f′(x)>xf′(x),若a∈(1,2),則(  )
A、f(log2a)<f(2a)<f(2)
B、f(2a)<f(2)<f(log2a)
C、f(log2a)<f(2)<f(2a
D、f(2)<f(log2a)<f(2a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知i為虛數(shù)單位,則復(fù)數(shù)
3+i
2-i
等于(  )
A、1-iB、-1-i
C、1+iD、-1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=4x-cosx,則f(x)在[0,2π]上的零點(diǎn)個數(shù)是( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知定點(diǎn)F(1,0),點(diǎn)P在y軸上運(yùn)動,點(diǎn)M在x軸上,點(diǎn)N為平面內(nèi)的動點(diǎn),且滿足
PM
PF
=0,
PM
+
PN
=0.
(1)求動點(diǎn)N的軌跡C的方程;
(2)設(shè)點(diǎn)Q是直線l:x=-1上任意一點(diǎn),過點(diǎn)Q作軌跡C的兩條切線QS,QT,切點(diǎn)分別為S,T,設(shè)切線QS,QT的斜率分別為k1,k2,直線QF的斜率為k0,求證:k1+k2=2k0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
a
=(sinx,cosx),
b
=(6sinx+cosx,7sinx-2cosx).設(shè)函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最大值及此時x的取值集合;
(Ⅱ)在角A為銳角的△ABC中,角A、B、C的對邊分別為a、b、c,f(A)=6且△ABC的面積為3,b+c=2+3
2
,求a的值.

查看答案和解析>>

同步練習(xí)冊答案