(本小題滿分12分)
如圖,在梯形中,,,,平面平面,四邊形是矩形,,點在線段上.

(1)求證:平面BCF⊥平面ACFE;
(2)當為何值時,∥平面?證明你的結論;

(Ⅰ)見解析;(Ⅱ)當時,平面 

解析

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

(本小題9分)如圖是一個空間幾何體的三視圖,其正視圖與側視圖是邊長為4cm的正三角形、俯視圖中正方形的邊長為4cm,

(1)畫出這個幾何體的直觀圖(不用寫作圖步驟);
(2)請寫出這個幾何體的名稱,并指出它的高是多少;
(3)求出這個幾何體的表面積。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,已知四棱錐P-ABCD,底面ABCD為菱形,PA1平面ABCD,∠ABC=60°,E,F(xiàn)分別是BC,PC的中點.
(1)證明:AE⊥PD‘
(2)若H為PD上的動點,EH與平面PAD所成最大角的正切值為求二面角E-AF-C的余弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,三棱柱中,側面底面,且,O中點.
(Ⅰ)證明:平面;
(Ⅱ)求直線與平面所成角的正弦值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,在矩形ABCD中,AB=4,AD=2,E為AB的中點,現(xiàn)將△ADE沿直線DE翻折成△,使平面⊥平面BCDE,F(xiàn)為線段的中點. ks5u
(Ⅰ)求證:EF∥平面;
(Ⅱ)求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四棱錐的底面是正方形,⊥底面,上的任意一點。

(1)求證:平面
(2)設,,求點到平面的距離
(3)求的值為多少時,二面角的大小為120°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本題滿分13分)
一個多面體的直觀圖和三視圖如下: (其中分別是中點)

(1)求證:平面;
(2)求多面體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(本小題滿分14分)
一個幾何體是由圓柱和三棱錐組合而成,點、在圓的圓周上,其正(主)視圖、側(左)視圖的面積分別為10和12,如圖3所示,其中,,,

(1)求證:;
(2)求二面角的平面角的大小.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

 (本小題滿分12分)請你設計一個包裝盒,如下圖所示,ABCD是邊長為60cm的正方形硬紙片,切去陰影部分所示的四個全等的等腰直角三角形,再沿虛線折起,使得A、B、C、D四個點重合于圖中的點P,正好形成一個正四棱挪狀的包裝盒E、F在AB上,是被切去的一等腰直角三角形斜邊的兩個端點.設AE= FB=x(cm).

(I)某廣告商要求包裝盒的側面積S(cm2)最大,試問x應取何值?
(II)某廠商要求包裝盒的容積V(cm3)最大,試問x應取何值?并求出此時包裝盒的高與底面邊長的比值.[

查看答案和解析>>

同步練習冊答案