如圖,在多面體ABCD-A1B1C1D1中,四邊形ABCD為等腰梯形,且AB∥CD,棱AA1,BB1,CC1,DD1垂直于面ABCD,AB=4,CD=2,CC1=DD1=2,BB1=AA1=4,E為AB的中點(diǎn).

(1)求證:C1E∥面AA1D1D;

(2)求證:直線A1D1,B1C1,AD,BC相交于同一個(gè)點(diǎn).

(3)當(dāng)BC=2時(shí),求多面體ABCD-A1B1C1D1的體積.

答案:
解析:

  (1)證明:連結(jié)AD1,∵C1C⊥面ABCD,D1D⊥面ABCD,∴C1C∥D1D,

  又C1C=D1D=2,∴四邊形C1CDD1為矩形,∴C1D1CD,又E為AB的中點(diǎn),CD∥AB,CD1AE,∴四邊形C1D1AE為平行四邊形,∴EG1//AD1,又AD1面AA1D1D,∴EC1//面AA1D1D  (4分)

  (2)略(4分)

  (3)連結(jié)PE交CD于點(diǎn)G,則GE為四棱臺(tái)AA1B1B-DD1C1C的高,

  且

  


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1,AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求證:A1B1⊥平面AA1C;
(2)求證:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求證:AB1∥平面 A1C1C;
(Ⅱ)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•青島二模)如圖,在多面體ABC-A1B1C1中,四邊形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求證:面A1AC⊥面ABC;
(Ⅱ)求證:AB1∥面A1C1C.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•合肥一模)如圖,在多面體ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求證:A1B1⊥平面AA1C;
(2)若D是BC的中點(diǎn),求證:B1D∥平面A1C1C;
(3)若BC=2,求幾何體ABC-A1B1C1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•鄭州二模)如圖,在多面體ABC-A1B1C1中,四邊形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求證:A1B1⊥平面AA1C; 
(II)求證:AB1∥平面 A1C1C;
(II)求BC與平面A1C1C所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊(cè)答案