已知函數(shù)f(x)=x3-ax2-(a-3)x+b,
(1)若函數(shù)f(x)在x=-1處取得極值-,求實(shí)數(shù)a,b的值;
(2)若a=1,且函數(shù)f(x)在[-1,2]上恰有兩個(gè)零點(diǎn),求實(shí)數(shù)b的取值范圍.
【答案】分析:(1)f′(x)=x2-3ax-(a-3),由f(x)在x=-1處取得極值-,可得f′(-1)=0,f(-1)=-,解出即可;
(2)先求出函數(shù)f(x)的解析式,然后研究函數(shù)f(x)在[-1,2]上的單調(diào)性,
根據(jù)函數(shù)f(x)在[-1,2]上恰有兩個(gè)零點(diǎn),建立不等關(guān)系,最后解之即可.
解答:解:(1)f′(x)=x2-3ax-(a-3),….(2分)
函數(shù)f(x)在x=-1處取得極值-,
….(6分)
解得,
經(jīng)檢驗(yàn),當(dāng)a=-2,b=1時(shí)函數(shù)f(x)在x=-1處取得極值…(8分)
(2)若a=1,f(x)=x3-x2+2x+b,f′(x)=x2-3x+2,
令f′(x)=0,得到x=1或x=2,
x-1 (-1,1)  1  (1,2)   2
f′(x)+-
f(x)極大值
…..(11分)
由于函數(shù)f(x)在[-1,2]上恰有兩個(gè)零點(diǎn)
解得…(14分)
點(diǎn)評:本題主要考查了利用導(dǎo)數(shù)研究函數(shù)的極值,以及函數(shù)的零點(diǎn)等有關(guān)基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想,屬于中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知函數(shù)f(x)=Asin(ωx+φ)(x∈R,A>0,ω>0,|φ|<
π
2
)的部分圖象如圖所示,則f(x)的解析式是( 。
A、f(x)=2sin(πx+
π
6
)(x∈R)
B、f(x)=2sin(2πx+
π
6
)(x∈R)
C、f(x)=2sin(πx+
π
3
)(x∈R)
D、f(x)=2sin(2πx+
π
3
)(x∈R)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•上海模擬)已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:上海模擬 題型:解答題

已知函數(shù)f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)當(dāng)a=1,b=2時(shí),求f(x)的最小值;
(2)若f(a)≥2m-1對任意0<a<b恒成立,求實(shí)數(shù)m的取值范圍;
(3)設(shè)k、c>0,當(dāng)a=k2,b=(k+c)2時(shí),記f(x)=f1(x);當(dāng)a=(k+c)2,b=(k+2c)2時(shí),記f(x)=f2(x).
求證:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:深圳一模 題型:解答題

已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案