設(shè)函數(shù).
(1)求函數(shù)的最小正周期和單調(diào)遞增區(qū)間;
(2)當(dāng)時(shí),的最大值為2,求的值,并求出的對稱軸方程.
(1);(2),的對稱軸方程為.
【解析】
試題分析:(1)求函數(shù)的單調(diào)遞減區(qū)間,首先對進(jìn)行恒等變化,將它變?yōu)橐粋(gè)角的一個(gè)三角函數(shù),然后利用三角函數(shù)的單調(diào)性,來求函數(shù)的單調(diào)遞減區(qū)間,本題首先通過降冪公式降冪,及倍角公式,得到與的關(guān)系式,再利用兩角和的三角函數(shù)公式,得到,從而得到單調(diào)遞增區(qū)間;(2)求的值,由已知當(dāng)時(shí),的最大值為2,由,得,當(dāng),即,,可求的值,求的對稱軸方程,即,解出,即得對稱軸方程.
試題解析:(1)
2分
則的最小正周期, 4分
且當(dāng)時(shí)單調(diào)遞增.
即為的單調(diào)遞增區(qū)間
(寫成開區(qū)間不扣分). 6分
(2)當(dāng)時(shí),當(dāng),即時(shí).
所以. 9分
為的對稱軸. 12分
考點(diǎn):二倍角的余弦;兩角和與差的正弦函數(shù); 函數(shù)的圖象與性質(zhì).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1知能達(dá)標(biāo)2-3練習(xí)卷(解析版) 題型:解答題
如圖所示,AB為⊙O的直徑,AE平分∠BAC交⊙O于E點(diǎn),過E作⊙O的切線交AC于點(diǎn)D,試判斷△AED的形狀,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1知能達(dá)標(biāo)1-3練習(xí)卷(解析版) 題型:填空題
如圖,在正方形ABCD中,E為AB的中點(diǎn),AF⊥DE于點(diǎn)O,則等于________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高中數(shù)學(xué)人教A版選修4-1知能達(dá)標(biāo)1-1練習(xí)卷(解析版) 題型:解答題
如圖所示,在梯形ABCD中,已知AD∥BC,DC⊥BC,∠B=60°,BC=AB,E為AB的中點(diǎn).
求證:△ECD為等邊三角形.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西安第一中學(xué)高三第二學(xué)期第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
設(shè)函數(shù).
(1)求函數(shù)的單調(diào)遞增區(qū)間;
(2)若關(guān)于的方程在區(qū)間內(nèi)恰有兩個(gè)相異的實(shí)根,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西安第一中學(xué)高三第二學(xué)期第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:填空題
函數(shù)的圖象和函數(shù)的圖象的交點(diǎn)個(gè)數(shù)是 。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西安第一中學(xué)高三第二學(xué)期第二次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題
運(yùn)行右圖所示框圖的相應(yīng)程序,若輸入的值分別為和,則輸出的值是( )
A.0 B.1 C. 2 D. -1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年陜西西安第一中學(xué)高三第二學(xué)期第二次模擬考試文科數(shù)學(xué)試卷(解析版) 題型:填空題
已知中,點(diǎn)的坐標(biāo)分別為則的面積為
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com