2.已知,某幾何體的三視圖(單位:cm)如圖所示,則該幾何體的體積為12(cm3);表面積為30+6$\sqrt{2}$(cm2).

分析 根據(jù)已知中的三視圖,畫出幾何體的直觀圖,進(jìn)而代入棱錐的體積公式,可得體積,計(jì)算每個(gè)面的面積,相加可得表面積.

解答 解:解:由三視圖可知該幾何體為四棱錐V-ABCD,
此四棱錐的底面為矩形,邊長(zhǎng)分別為3,4,側(cè)棱VA和底面垂直,該棱長(zhǎng)為3,即棱錐的高為3,
故體積為:$\frac{1}{3}$×3×12=12cm3;
側(cè)面VAB的面積為:$\frac{1}{2}×3×3=\frac{9}{2}$
側(cè)面VAD的面積為:$\frac{1}{2}$×3×4=6
側(cè)面VBC的面積為:$\frac{1}{2}×3\sqrt{2}×4=6\sqrt{2}$
側(cè)面VCD的面積為:$\frac{1}{2}×3×5=\frac{15}{2}$
故幾何體的表面積S=30+6$\sqrt{2}$cm2
故答案為:12,30+6$\sqrt{2}$

點(diǎn)評(píng) 本題考查了利用空間幾何體的三視圖求體積與表面積的應(yīng)用問(wèn)題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知冪函數(shù)f(x)=k•xa的圖象過(guò)點(diǎn)($\frac{1}{2}$,$\frac{1}{4}$)則k+a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.在△ABC中,“sinB=1”是“△ABC為直角三角形”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.過(guò)點(diǎn)(1,3)且漸近線為y=±$\frac{1}{2}$x的雙曲線方程是$\frac{4{y}^{2}}{35}$-$\frac{{x}^{2}}{35}$=1,其實(shí)軸長(zhǎng)是$\sqrt{35}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.與角-$\frac{5π}{8}$終邊相同的角是(  )
A.$\frac{3π}{8}$B.$\frac{7π}{8}$C.$\frac{11π}{8}$D.$\frac{21π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知某企業(yè)1月份到6月份的利潤(rùn)X(單位:萬(wàn)元)受到市場(chǎng)的影響,是一個(gè)隨機(jī)變量,每個(gè)月的利潤(rùn)互不影響,且X的分布列如表所示:
X691218
Pa$\frac{1}{3}$$\frac{1}{10}$$\frac{1}{15}$
(1)求第1個(gè)月和第2個(gè)月的利潤(rùn)不都高于9萬(wàn)元的概率;
(2)求每個(gè)月的平均利潤(rùn);
(3)求證:4,5,6月份的總利潤(rùn)是1,2,3月份的總利潤(rùn)的3倍的概率為$\frac{1}{27000}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.在等差數(shù)列{an}和等比數(shù)列{bn}中,a1=b1=2,a2=b2=2+b,Sn是{bn}前n項(xiàng)和.
(1)若$\underset{lim}{n→∞}$Sn=3-b,求實(shí)數(shù)b的值;
(2)若b=3,設(shè)cn=(-1)n+1•an•an+1,數(shù)列{cn}的前n項(xiàng)和為Tn,是否存在這樣的實(shí)數(shù)t,使得對(duì)于所有的n都有Tn≥tn2成立,若存在,求出t的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
(3)是否存在正實(shí)數(shù)b,使得數(shù)列{bn}中至少有三項(xiàng)在數(shù)列{an}中,但{bn}中的項(xiàng)不都在數(shù)列{an}中,若存在,求出一個(gè)可能的b的值,若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知函數(shù)f(x)=$\left\{\begin{array}{l}{lo{g}_{2}x,x>0}\\{(\frac{1}{2})^{x},x≤0}\end{array}\right.$,則滿足方程f(a)=1的所有a的取值構(gòu)成的集合為{2,0}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.計(jì)算以下式子的值:
(1)${(-2016)^0}+\root{3}{2}•{2^{\frac{2}{3}}}+{(\frac{1}{4})^{-\frac{1}{2}}}$;
(2)${log_3}81+lg20+lg5+{4^{{{log}_4}2}}+{log_5}1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案