【題目】已知是圓錐的頂點(diǎn),是圓錐底面的直徑,是底面圓周上一點(diǎn),,,平面和平面將圓錐截去部分后的幾何體如圖所示.

1)求與底面所成的角;

2)求該幾何體的體積;

3)求二面角的余弦值.

【答案】123

【解析】

1)設(shè)OBD的中點(diǎn),連接CO,AO,則∠ACOAC與底面所成的角,根據(jù)幾何法,即可求解;

2)該幾何體可看作是半個(gè)圓錐和三棱錐組合而成,可分別計(jì)算體積,再求和;

3)取DC的中點(diǎn)E,連接OE,AE,則有OECD,且AECD,則∠AEO為二面角的平面角,根據(jù)幾何法,即可求解二面角.

1)設(shè)OBD的中點(diǎn),連接COAO,

則∠ACOAC與底面所成的角,

ACBDADAB2,所以三角形ABD為正三角形,AO,

CO1,所以

ACO60°,AC與底面所成的角為60°

2)由題意∠CBD60°,

所以該幾何體的體積;

3)取DC的中點(diǎn)E,連接OEAE,

因?yàn)?/span>OCOD,所以OECD,

同理AECD,

則∠AEO為二面角的平面角,

因?yàn)?/span>OCOBBC1,

所以正三角形OBC,∠BOC60°,∠COD120°,∠OCD30°,

所以OE,

所以,

所以二面角的余弦值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】由于受到網(wǎng)絡(luò)電商的沖擊,某品牌的洗衣機(jī)在線下的銷售受到影響,承受了一定的經(jīng)濟(jì)損失,現(xiàn)將地區(qū)200家實(shí)體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失統(tǒng)計(jì)如圖所示.

1)求的值;

2)求地區(qū)200家實(shí)體店該品牌洗衣機(jī)的月經(jīng)濟(jì)損失的眾數(shù)以及中位數(shù);

3)不經(jīng)過計(jì)算,直接給出地區(qū)200家實(shí)體店經(jīng)濟(jì)損失的平均數(shù)6000的大小關(guān)系.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了鼓勵(lì)市民節(jié)約用電,實(shí)行“階梯式”電價(jià),將該市每戶居民的月用電量劃分為三檔,月用電量不超過200度的部分按元/度收費(fèi),超過200度但不超過400度的部分按元/度收費(fèi),超過400度的部分按1.0元/度收費(fèi).

(Ⅰ)求某戶居民用電費(fèi)用(單位:元)關(guān)于月用電量(單位:度)的函數(shù)解析式;

(Ⅱ)為了了解居民的用電情況,通過抽樣,獲得了今年1月份100戶居民每戶的用電量,統(tǒng)計(jì)分析后得到如圖所示的頻率分布直方圖,若這100戶居民中,今年1月份用電費(fèi)用不超過260元的占,求, 的值;

(Ⅲ)在滿足(Ⅱ)的條件下,若以這100戶居民用電量的頻率代替該月全市居民用戶用電量的概率,且同組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)代替,記為該居民用戶1月份的用電費(fèi)用,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

(I)若函數(shù)處取得極值,求實(shí)數(shù)的值;并求此時(shí)上的最大值;

()若函數(shù)不存在零點(diǎn),求實(shí)數(shù)a的取值范圍;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】10名象棋選手進(jìn)行單循環(huán)賽(即每兩名選手比賽一場).規(guī)定兩人對(duì)局勝者得2分,平局各得1分,負(fù)者得0分,并按總得分由高到低進(jìn)行排序比賽結(jié)束后,10名選手的得分各不相同,且第二名的得分是最后五名選手得分之和的則第二名選手的得分是____

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某蛋糕店每天制作生日蛋糕若干個(gè),每個(gè)生日蛋糕成本為50元,每個(gè)蛋糕的售價(jià)為100元,如果當(dāng)天賣不完,剩余的蛋糕作垃圾處理.現(xiàn)搜集并整理了100天生日蛋糕的日需求量(單位:個(gè)),得到如圖所示的柱狀圖.100天記錄的各需求量的頻率作為每天各需求量發(fā)生的概率.

1若該蛋糕店某一天制作生日蛋糕17個(gè),設(shè)當(dāng)天的需求量為,則當(dāng)天的利潤(單位:元)是多少?

2若蛋糕店一天制作17個(gè)生日蛋糕.

求當(dāng)天的利潤(單位:元)關(guān)于當(dāng)天需求量的函數(shù)解析式;

求當(dāng)天的利潤不低于600圓的概率.

(3)若蛋糕店計(jì)劃一天制作16個(gè)或17個(gè)生日蛋糕,請(qǐng)你以蛋糕店一天利潤的平均值作為決策依據(jù),應(yīng)該制作16個(gè)還是17個(gè)生日蛋糕?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《算法統(tǒng)宗》是中國古代數(shù)學(xué)名著,由明代數(shù)學(xué)家程大位所著,該作完善了珠算口訣,確立了算盤用法,完成了由籌算到珠算的徹底轉(zhuǎn)變,該作中有題為“李白沽酒”“李白街上走,提壺去買酒。遇店加一倍,見花喝一斗,三遇店和花,喝光壺中酒。借問此壺中,原有多少酒?”,如圖為該問題的程序框圖,若輸出的值為0,則開始輸入的值為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,平面平面,四邊形為矩形, 的中點(diǎn),

1)求證:

2)若時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的左、右焦點(diǎn)為別為、,且過點(diǎn).

(1)求橢圓的標(biāo)準(zhǔn)方程;

(2)如圖,點(diǎn)為橢圓上一動(dòng)點(diǎn)(非長軸端點(diǎn)),的延長線與橢圓交于點(diǎn),的延長線與橢圓交于點(diǎn),求面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案