【題目】已知函數(shù) ,
(1)求函數(shù) 的單調(diào)增區(qū)間;
(2)若 ,解不等式 ;
(3)若 ,且對任意 ,方程 總存在兩不相等的實數(shù)根,求 的取值范圍.

【答案】
(1)解:∵ ,
∴ f(x)=
的單調(diào)增區(qū)間為 , 的單調(diào)增區(qū)間為 , ; 的單調(diào)增區(qū)間為
(2)解:∵ ,∴ 單調(diào)遞增,在 單調(diào)遞減,在 單調(diào)遞增,
:令 解得:
∴不等式的解為: ;若 :令
解得: , ,根據(jù)圖象不等式的解為: ,綜上: :不等式的解為 ; :不等式的解為
(3)解: , ∵ ,∴ 單調(diào)遞增,在 單調(diào)遞減,在 單調(diào)遞增,∴ ,
單調(diào)遞增,∴
單調(diào)遞減,在 單調(diào)遞增,∴必須 ,
,即實數(shù) 的取值范圍是
【解析】(1)根據(jù)絕對值的應(yīng)用,結(jié)合函數(shù)的單調(diào)性進行判斷.
(2)根據(jù)一元二次不等式的解法進行求解即可.
(3)根據(jù)函數(shù)單調(diào)性的性質(zhì),結(jié)合函數(shù)與方程的關(guān)系進行求解即可. 判斷函數(shù)的單調(diào)性,有四種方法:定義法;導(dǎo)數(shù)法;函數(shù)圖象法;基本函數(shù)的單調(diào)性的應(yīng)用;復(fù)合函數(shù)遵循“同增異減”;證明方法有定義法;導(dǎo)數(shù)法.
【考點精析】認真審題,首先需要了解利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性(一般的,函數(shù)的單調(diào)性與其導(dǎo)數(shù)的正負有如下關(guān)系: 在某個區(qū)間內(nèi),(1)如果,那么函數(shù)在這個區(qū)間單調(diào)遞增;(2)如果,那么函數(shù)在這個區(qū)間單調(diào)遞減).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,底面△ABC是等腰直角三角形,且斜邊 ,側(cè)棱AA1=2,點D為AB的中點,點E在線段AA1上,AE=λAA1(λ為實數(shù)).

(1)求證:不論λ取何值時,恒有CD⊥B1E;
(2)當 時,記四面體C1﹣BEC的體積為V1 , 四面體D﹣BEC的體積為V2 , 求V1:V2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,設(shè)橢圓C: =1(a>b>0)的離心率為 ,A,B分別為橢圓C的左、右頂點,F(xiàn)為右焦點.直線y=6x與C的交點到y(tǒng)軸的距離為 ,過點B作x軸的垂線l,D為l 上異于點B的一點,以BD為直徑作圓E.

(1)求C 的方程;
(2)若直線AD與C的另一個交點為P,證明PF與圓E相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某飲料生產(chǎn)企業(yè)為了占有更多的市場份額,擬在2017年度進行一系列促銷活動,經(jīng)過市場調(diào)查和測算,飲料的年銷售量x萬件與年促銷費t萬元間滿足 .已知2017年生產(chǎn)飲料的設(shè)備折舊,維修等固定費用為3萬元,每生產(chǎn)1萬件飲料需再投入32萬元的生產(chǎn)費用,若將每件飲料的售價定為其生產(chǎn)成本的150%與平均每件促銷費的一半之和,則該年生產(chǎn)的飲料正好能銷售完.
(1)將2017年的利潤y(萬元)表示為促銷費t(萬元)的函數(shù);
(2)該企業(yè)2017年的促銷費投入多少萬元時,企業(yè)的年利潤最大?
(注:利潤=銷售收入-生產(chǎn)成本-促銷費,生產(chǎn)成本=固定費用+生產(chǎn)費用)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標系 中,曲線 的參數(shù)方程為 為參數(shù)),在以 為極點, 軸的正半軸為極軸的極坐標系中,曲線 是圓心為 ,半徑為1的圓.
(1)求曲線 的直角坐標方程;
(2)設(shè) 為曲線 上的點, 為曲線 上的點,求 的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知命題p:已知實數(shù)a,b,則ab>0是a>0且b>0的必要不充分條件,命題q:在曲線y=cos x上存在斜率為 的切線,則下列判斷正確的是( )
A.p是假命題
B.q是真命題
C.p∧( )是真命題
D.( )∧q是真命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知 分別為 內(nèi)角的對邊 , .

(1)若 的中點,求 ;
(2)若 ,判斷 的形狀,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在扶貧活動中,為了盡快脫貧(無債務(wù))致富,企業(yè)甲將經(jīng)營狀況良好的某種消費品專賣店以5.8萬元的優(yōu)惠價格轉(zhuǎn)讓給了尚有5萬元無息貸款沒有償還的小型企業(yè)乙,并約定從該店經(jīng)營的利潤中,首先保證企業(yè)乙的全體職工每月最低生活費的開支3 600元后,逐步償還轉(zhuǎn)讓費(不計息).在甲提供的資料中:①這種消費品的進價為每件14元;②該店月銷量Q(百件)與銷售價格P(元)的關(guān)系如圖所示;③每月需各種開支2 000元.

(1)當商品的價格為每件多少元時,月利潤扣除職工最低生活費的余額最大?并求最大余額;
(2)企業(yè)乙只依靠該店,最早可望在幾年后脫貧?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)= ,若方程f(f(x))=a(a>0)恰有兩個不相等的實根x1 , x2 , 則e e 的最大值為(
A.
B.2(ln2﹣1)
C.
D.ln2﹣1

查看答案和解析>>

同步練習(xí)冊答案