【題目】已知三棱柱ABC﹣A1B1C1的側(cè)棱與底面邊長都相等,A1在底面ABC內(nèi)的射影為△ABC的中心,則AC1與底面ABC所成角的余弦值等于( )
A. B. C. D.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù) ,,已知有三個互不相等的零點(diǎn),且.
(Ⅰ)若.(ⅰ)討論的單調(diào)區(qū)間;(ⅱ)對任意的,都有成立,求的取值范圍;
(Ⅱ)若且,設(shè)函數(shù)在,處的切線分別為直線,,是直線,的交點(diǎn),求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,平面ABCD,四邊形AEFB為矩形,,,.
(1)求證:平面ADE;
(2)求平面CDF與平面AEFB所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,橢圓的參數(shù)方程為(為參數(shù)).以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為.
(1)求橢圓的極坐標(biāo)方程和直線的直角坐標(biāo)方程;
(2)若點(diǎn)的極坐標(biāo)為,直線與橢圓相交于,兩點(diǎn),求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐的底面為直角梯形,,且,,,平面底面,為的中點(diǎn),為等邊三角形,是棱上的一點(diǎn),設(shè)(與不重合).
(1)當(dāng)時,求三棱錐的體積;
(2)若平面,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè).
(1)若,且為函數(shù)的一個極值點(diǎn),求函數(shù)的單調(diào)遞增區(qū)間;
(2)若,且函數(shù)的圖象恒在軸下方,其中是自然對數(shù)的底數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com