【題目】為了解某社區(qū)居民有無收看“奧運會開幕式”,某記者分別從某社區(qū)60~70歲,40~50歲,20~30歲的三個年齡段中的160人,240人,x人中,采用分層抽樣的方法共抽查了30人進行調(diào)查,若在60~70歲這個年齡段中抽查了8人,那么x(  )

A. 90 B. 120 C. 180 D. 200

【答案】D

【解析】

試題分析:先求出每個個體被抽到的概率,用每層的個體數(shù)乘以每個個體被抽到的概率等于該層應(yīng)抽取的個體數(shù),利用已知在6070歲這個年齡段中抽查了8人,可以求出抽取的總?cè)藬?shù),從而求出x的值.

解:6070歲,4050歲,2030歲的三個年齡段中的160240,X人中可以抽取30人,

每個個體被抽到的概率等于:,

6070歲這個年齡段中抽查了8人,可知×160=8

解得x=200,

故選D

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】已知四棱錐P-ABCD中,PD⊥平面ABCD,ABCD是正方形,E是PA的中點.

(Ⅰ)求證:PC∥平面EBD;

(Ⅱ)求證:平面PBC⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】設(shè)橢圓C: =1(α>b>0)經(jīng)過點( ),且原點、焦點,短軸的端點構(gòu)成等腰直角三角形.
(1)求橢圓E的方程;
(2)是否存在圓心在原點的圓,使得該圓的任意一條切線(切線斜率存在)與橢圓C恒有兩個交點A,B.且 ?若存在,求出該圓的方程,若不存在說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定圓,動圓過點 且與圓相切,記圓心的軌跡為

(1)求曲線的方程;

(2)已知直線 交圓兩點.是曲線上兩點,若四邊形的對角線,求四邊形面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在平面立角坐標系中,過點的圓的圓心軸上,且與過原點傾斜角為的直線相切.

(1)求圓的標準方程;

(2)在直線上,過點作圓的切線,切點分別為、,求經(jīng)過、、、四點的圓所過的定點的坐標.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某地隨著經(jīng)濟的發(fā)展,居民收入逐年增長,如表是該地一建設(shè)銀行連續(xù)五年的儲蓄存款(年底余額),如表1

年份x

2011

2012

2013

2014

2015

儲蓄存款y(千億元)

5

6

7

8

10

為了研究計算的方便,工作人員將上表的數(shù)據(jù)進行了處理,得到表2:

時間代號t

1

2

3

4

5

z

0

1

2

3

5

(1)求z關(guān)于t的線性回歸方程;

(2)通過(1)中的方程,求出y關(guān)于x的回歸方程;

(3)用所求回歸方程預(yù)測到2010年年底,該地儲蓄存款額可達多少?

附:對于線性回歸方程,

其中, .

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】駐馬店市政府委托市電視臺進行“創(chuàng)建森林城市”知識問答活動,市電視臺隨機對該市15~65歲的人群抽取了人,繪制出如圖1所示的頻率分布直方圖,回答問題的統(tǒng)計結(jié)果如表2所示.

(1)分別求出的值;

(2)從第二、三、四、五組回答正確的人中用分層抽樣的方法抽取7人,則從第二、三、四、五組每組回答正確的人中應(yīng)各抽取多少人?

(3)在(2)的條件下,電視臺決定在所抽取的7人中隨機選2人頒發(fā)幸運獎,求所抽取的人中第二組至少有1人獲得幸運獎的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在(0,+∞)上的連續(xù)函數(shù)y=f(x)滿足:xf′(x)﹣f(x)=xex且f(1)=﹣3,f(2)=0.則函數(shù)y=f(x)(
A.有極小值,無極大值
B.有極大值,無極小值
C.既有極小值又有極大值
D.既無極小值又無極大值

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)寫出函數(shù)的解析式;

(2)若直線與曲線有三個不同的交點,求的取值范圍;

(3)若直線 與曲線內(nèi)有交點,求的取值范圍.

查看答案和解析>>

同步練習冊答案