記函數(shù)f(x)=
x-1
x+1
的定義域為A,g(x)=lg[(x-a-1)(2a-x)](a<1)的定義域為B,求
(1)A,B;
(2)若B⊆A,求實數(shù)a的取值范圍.
考點(diǎn):函數(shù)的定義域及其求法,集合的包含關(guān)系判斷及應(yīng)用
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:(1)使函數(shù)有意義,列出不等式,求出函數(shù)的定義域,即可得到集合A,B.
(2)結(jié)合(1)求出集合A,B,利用B⊆A,建立關(guān)于a的不等關(guān)系求實數(shù)a的取值范圍.
解答: 解:(1)
x-1
x+1
≥0,等價于
(x-1)(x+1)≥0
x+1≠0.
即x<-1或x≥1
∴A=(-∞,-1)∪[1,+∞)
由(x-a-1)(2a-x)>0,得(x-a-1)(x-2a)<0.
∵a<1,∴a+1>2a,∴B=(2a,a+1).
(2)∵B⊆A,∴2a≥1或a+1≤-1,即a≥
1
2
或a≤-2,而a<1,
1
2
≤a<1或a≤-2,
故當(dāng)B⊆A時,實數(shù)a的取值范圍是(-∞,-2]∪[
1
2
,1)
點(diǎn)評:本題是中檔題,考查函數(shù)的定義域,不等式的解法,含字母的集合問題的討論,考查計算能力,分類討論的思想.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

與直線x+2y+3=0垂直的拋物線y=x2的切線方程是( 。
A、2x-y-3=0
B、2x-y-1=0
C、2x-y+1=0
D、2x-y+3=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對?n∈N*,數(shù)列an均滿足2an=an+1+an-1,現(xiàn)已知數(shù)列共有20項,其中偶數(shù)項的和為15,前20項的和為25,求該數(shù)列的公差d=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)隨機(jī)變量ξ~B(2,p),η~B(4,p),若P(ξ≥1)=
5
9
,則P(η≥2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x3-2x+2有唯一零點(diǎn),則存在零點(diǎn)的區(qū)間是( 。
A、(-2,-
3
2
)
B、(-
3
2
,-1)
C、(-1,-
1
2
)
D、(-
1
2
,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù),f(x)=cosx,g(x)=-x2+4x-3,若存在實數(shù)a,b∈R,滿足g(a)=f(b),則a的取值范圍是( 。
A、[1,3]
B、(1,3)
C、[2-
2
,2+
2
]
D、(2-
2
,2+
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a=log2sin
π
7
b=log
1
π
1
3
,c=2
1
3
,則a,b,c的大小關(guān)系是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點(diǎn),對稱軸為坐標(biāo)軸,橢圓C的右焦點(diǎn)與拋物線y2=4
3
x
的焦點(diǎn)重合,且橢圓C過點(diǎn)(
3
,-
1
2
)

(I)求橢圓C的方程;
(II)過點(diǎn)(
6
5
,0)
作直線l交橢圓C于M,N兩點(diǎn)(直線l與x軸不重合),A為橢圓C的右頂點(diǎn),試判斷以MN為直徑的圓是否恒過點(diǎn)A,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在△ABC中,AB=3,BC=5,∠ABC=120°將△ABC繞直線AB旋轉(zhuǎn)一周,則所形成的旋轉(zhuǎn)體的側(cè)面積是
 

查看答案和解析>>

同步練習(xí)冊答案