【題目】已知點是單位正方體的對角面上的一動點,過點作垂直于平面的直線,與正方體的側(cè)面相交于、兩點,則的面積的最大值為( )
A. B. C. D.
【答案】A
【解析】
根據(jù)題意和正方體的特征,分析點P動的過程中,x隨著y變化情況作出軌跡圖象,數(shù)形結(jié)合能求出結(jié)果.
解:由題意知,MN⊥平面BB1D1D,其軌跡經(jīng)過B,D1和側(cè)棱AA1,CC1的中點E,F,
如圖,設正方體中心為O1,當P點在線段BO1上運動時,MN隨BP的增大而線性增大,所以△BMN的面積表達式應是開口向上的二次函數(shù)圖像遞增的一部分; 當P點在線段D1O1上運動時, MN隨D1P的增大而線性減小,所以△BMN的面積表達式應是開口向下的二次函數(shù)圖像遞減的一部分.所以當MN與EF重合時,△BMN的面積取最大值,
此時,BM=BN,
MN,
S△BMN.
故選:A.
科目:高中數(shù)學 來源: 題型:
【題目】下列說法:①若線性回歸方程為,則當變量增加一個單位時,一定增加3個單位;②將一組數(shù)據(jù)中的每個數(shù)據(jù)都加上同一個常數(shù)后,方差不會改變;③線性回歸直線方程必過點;④抽簽法屬于簡單隨機抽樣;其中錯誤的說法是( )
A.①③B.②③④C.①D.①②④
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在四棱錐中,平面,四邊形是菱形,,,且交于點,是上任意一點.
(1)求證;
(2)已知二面角的余弦值為,若為的中點,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線過點,是拋物線上不同兩點,且(其中是坐標原點),直線與交于點,線段的中點為.
(Ⅰ)求拋物線的準線方程;
(Ⅱ)求證:直線與軸平行.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的離心率為,點在橢圓上,,分別為橢圓的上、下頂點,點.
(1)求橢圓的方程;
(2)若直線與橢圓的另一交點分別為,證明:直線過定點.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】袋子中有四個小球,分別寫有“美、麗、華、一”四個字,有放回地從中任取一個小球,直到“華”“一”兩個字都取到就停止,用隨機模擬的方法估計恰好在第四次停止的概率.利用計算機隨機產(chǎn)生0到3之間取整數(shù)值的隨機數(shù),分別用0,1,2,3代表“美、麗、華、一”這四個字,以每四個隨機數(shù)為一組,表示取球四次的結(jié)果,經(jīng)隨機模擬產(chǎn)生了以下20組隨機數(shù):
2323 3211 2303 1233 0211 1322 2201 2213 0012 1231
2312 1300 2331 0312 1223 1031 3020 3223 3301 3212
由此可以估計,恰好第四次就停止的概率為( )
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在直角坐標系中,直線的參數(shù)方程為(為參數(shù)),曲線的參數(shù)方程為(為參數(shù)),以該直角坐標系的原點為極點,軸的非負半軸為極軸建立極坐標系,曲線的極坐標方程為.
(Ⅰ)分別求曲線的極坐標方程和曲線的直角坐標方程;
(Ⅱ)設直線交曲線于,兩點,交曲線于,兩點,求的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】在一次公里的自行車個人賽中,25名參賽選手的成績(單位:分鐘)的莖葉圖如圖所示:
(1)現(xiàn)將參賽選手按成績由好到差編為1~25號,再用系統(tǒng)抽樣方法從中選取5人,已知選手甲的成績?yōu)?5分鐘,若甲被選取,求被選取的其余4名選手的成績的平均數(shù);
(2)若從總體中選取一個樣本,使得該樣本的平均水平與總體相同,且樣本的方差不大于7,則稱選取的樣本具有集中代表性,試從總體(25名參賽選手的成績)選取一個具有集中代表性且樣本容量為5的樣本,并求該樣本的方差.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com