設α,β為兩個不重合的平面,m,n為兩條不重合的直線,現(xiàn)給出下列四個命題:
①若m∥n,n?α,則m∥n;
②若m⊥n,m⊥α,則n∥α;
③若α⊥β,α∩β=m,n?α,n⊥m,則n⊥β;
④若m∥n,n⊥α,α∥β,則m⊥β.
其中,所有真命題的序號是
③④
③④
分析:根據(jù)線面平行的判定定理:平面外的直線與平面內的一條直線平行,則直線與平面平行;
線面垂直判定:既可以通過線線垂直、面面垂直得到,也可通過線線平行得到(平行線中的一條垂直于平面,則另一條也垂直于平面).
再結合相關的性質證明.
解答:解:∵m∥n,n?α,則m∥α或m?α,∴①×;
∵m⊥n,m⊥α,則n∥α或n?α∴②×;
根據(jù)面面垂直的性質,在其中一個平面內垂直于交線的直線,垂直于另一平面,∴③√;
∵α∥β,n⊥α⇒n⊥β,又∵m∥n,∴m⊥β,∴④√;
故答案是③④
點評:本題考查線面平行與垂直關系的判定,判定定理的條件缺一不可.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

6、設a,b為兩個不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號是( 。

查看答案和解析>>

科目:高中數(shù)學 來源:2010年江蘇省高一下學期期末考試數(shù)學卷 題型:填空題

a,b為兩個不重合的平面,l,mn為兩兩不重合的直線,給出下列四個命題:

①若ab,lÌa,則lb

②若mÌa,nÌa,mbnb,則ab; 

③若la,lb,則ab;

④若mn是異面直線,ma,na,且lm,ln,則la.

其中真命題的序號是____★____

 

查看答案和解析>>

科目:高中數(shù)學 來源:南京模擬 題型:單選題

設a,b為兩個不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若ab,l⊥a,則l⊥b;②若m⊥a,n⊥a,mb,nb,則ab;③若la,l⊥b,則a⊥b;④若m、n是異面直線,ma,na,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號是( 。
A.①③④B.①②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年四川省成都市石室中學高三(上)9月月考數(shù)學試卷(文科)(解析版) 題型:選擇題

設a,b為兩個不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號是( )
A.①③④
B.①②③
C.①③
D.②④

查看答案和解析>>

科目:高中數(shù)學 來源:2007年江蘇省南京市高三3月調研數(shù)學試卷(解析版) 題型:選擇題

設a,b為兩個不重合的平面,l,m,n為兩兩不重合的直線,給出下列四個命題:
①若a∥b,l⊥a,則l⊥b;②若m⊥a,n⊥a,m∥b,n∥b,則a∥b;③若l∥a,l⊥b,則a⊥b;④若m、n是異面直線,m∥a,n∥a,且l⊥m,l⊥n,則l⊥a.
其中真命題的序號是( )
A.①③④
B.①②③
C.①③
D.②④

查看答案和解析>>

同步練習冊答案