A. | e2e+3f(e)<e2ππ3f(π) | B. | e2e+3f(π)>e2ππ3f(e) | C. | e2e+3f(π)<e2ππ3f(e) | D. | e2e+3f(e)>e2ππ3f(π) |
分析 令g(x)=e2xx3f(x),g′(x)=)=e2xx2[(2x+3)f(x)+xf′(x)]>0,⇒g(x)=e2xx3f(x)在(0,+∞)上單調(diào)遞增⇒g(e)<g(π),即可得到.
解答 解:∵f(x)>0且$\frac{2x+3}{x}>-\frac{{{f^'}(x)}}{f(x)}$總成立,∴(2x+3)f(x)+xf′(x)>0.
令g(x)=e2xx3f(x),g′(x)=)=e2xx2[(2x+3)f(x)+xf′(x)]>0,
∴g(x)=e2xx3f(x)在(0,+∞)上單調(diào)遞增,∴g(e)<g(π),
∴e2e+3f(e)<e2ππ3f(π),故選:A.
點評 本題考查了構(gòu)造新函數(shù),處理不等式問題,屬于壓軸題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ②、③ | B. | ③、④ | C. | ①、④ | D. | ①、② |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com